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ABSTRACT
A practical yet under-explored problem often encountered
by multimedia researchers is the recognition of imperfect
testing data, where multiple sensing channels are deployed
but interference or transmission distortion corrupts some of
them. Typical cases of imperfect testing data include miss-
ing features and feature misalignments. To address these
challenges, we choose the latent space model and introduce a
new similarity learning canonical-correlation analysis (SLC-
CA) method to capture the semantic consensus between
views. The consensus information is preserved by projec-
tion matrices learned with modified canonical-correlation
analysis (CCA) optimization terms with new, explicit class-
similarity constraints. To make it computationally tractable,
we propose to combine a practical relaxation and an al-
ternating scheme to solve the optimization problem. Ex-
periments on four challenging multi-view visual recognition
datasets demonstrate the efficacy of the proposed method.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval; I.2.10 [Artificial Intelligence]:
Vision and Scene Understanding

Keywords
similarity learning; CCA; missing data; misalignment

1. INTRODUCTION
Thanks to the recent popularity of multi-sensory and multi-

spectrum imaging, such as depth-sensing and infrared (IR)
sensing cameras, visual recognition with multiple views of
information attracts the attention of many multimedia and
computer vision researchers. However, the pronounced reli-
ability issues and data integrity concerns of multiple sensors
plague the adoption of these systems in real world appli-
cations, especially in harsh or adversarial sensing environ-
ments.
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In particular, this paper addresses two common obstacles
in these sensing systems, i.e., the missing feature problem
and the feature misalignment problem in testing data. For
both problems, the system is typically trained with labeled
multi-view data in advance, but the testing data could be
imperfect: the secondary view can be completely missing,
or both views can be randomly missing, possibly caused
by sensor malfunction, predominant interferences or limited
transmission bandwidth. The feature misalignment problem
could arise when the semantic correspondences between t-
wo views (i.e., sensing channels) are corrupted during testing
data acquisition or transmission, thus cross-view verification
is required to recover these correspondences.

For these problems, the major challenge lies in how to
effectively leverage the semantic consensus across all views,
so as to facilitate the training of a stronger classifier that
works solely on a single view, or a verification algorithm that
captures the cross-view similarity information. In particular,
we propose to seek a common semantic space to capture the
relevance among multiple views, and further incorporate the
discriminative information embedded in the class labels.

This is achieved by a new similarity learning canonical-
correlation analysis algorithm, namely, the similarity learn-
ing canonical-correlation analysis (SLCCA) algorithm, in-
spired by [34, 35], which constructs projection matrices for
a common latent space, where the intra-class and inter-class
relationships are preserved. These learned projection ma-
trices are subsequently used to discriminatively transfer all
observations from all views to this common semantic space.

After obtaining the projected training samples in the com-
mon space, conventional supervised classifiers (e.g., the SVM
classifier [5]) or verification algorithm (e.g., the joint Bayesian
verification algorithm [6, 18, 19]) can be trained in this s-
pace. For the recognition problem, the testing data from the
available view is projected onto this space before applying
the aforementioned classifier1. For the cross-modal verifica-
tion problem, both modalities are first projected onto this
space before learning their pairwise similarity.

The primary contributions of this paper are: (1) we in-
vestigate two common data integrity difficulties in multi-
view recognition systems (i.e., the missing feature problem
and the feature misalignment problem), and propose a uni-
fied solution by leveraging the semantic consensus; (2) we
propose the new SLCCA algorithm, whose performance en-
hancements on various recognition/verification asks are val-
idated on four different real world datasets; (3) after for-
mulating the problem as a generic quadratically constrained

1An overview of this approach is presented in Fig. 1.

561



quadratic program (QCQP), we relax it and approximate it
with an alternating optimization of a linear program and a
decomposition procedure, and finally efficiently solve it.

The rest of the paper is organized as follows. Related
works are briefly discussed in Section 2. Section 3 formu-
lates the proposed SLCCA algorithm, followed by Section 4
with the solution to it. Experimental datasets and settings
are summarized in Section 5. Section 6 presents the experi-
mental results, and Section 7 concludes the paper.

2. RELATED WORK
In this section, related work is summarized, then brief

comparisons between these related works and the focused
problem of this paper are provided.

Inspired by the human cognition and psychology studies
with multi-sensory/uni-sensory experiments in [25] (where
human volunteers performing the uni-sensory recognition
tasks with prior multi-sensory learning significantly outper-
forms their counterparts with uni-sensory learning), we make
the hypothesis that there should be an underlying common
semantic space representing some consensus between mul-
tiple views/sensory channels. This hypothesis is capable of
justifying the phenomenon in [25], and the remaining chal-
lenge is to design at least one method to recover this se-
mantic latent space. Once this latent space is obtained, the
missing data resilient multi-view recognition problem and
the cross-modal verification problem can be readily solved,
following Fig. 1.

In order to construct such a semantic common space, in-
formation transfer with preserved discriminative power is
crucial. There are plenty of work in the transfer learning lit-
erature (e.g., [10, 24, 15]), however, they generally focus on
transferring the label information from the source domain
to the target domain, instead of preserving the congruen-
t information embedded in the labeled, paired multi-view
training samples.

As for preserving the cross-view consensus, the early semi-
supervised co-training framework [2] and the later multi-
view/multi-task learning work [11, 37, 22, 32, 1] are exam-
ples of synergistically modeling multiple views and fusing the
information from all views. However, it is worth noting that
there are no missing data (missing view or missing observa-
tions) involved, and there are no easy extension to address
the cross-view verification problem (as defined in Section 1).
A recent work [8] addresses both the missing view recogni-
tion and domain transfer problems, by imposing additional
regularization terms on a multi-view classifier, but without
explicitly modeling the discriminative label information.

Another line of research involves methods that also as-
sume a common semantic space model, such as different
variants of the CCA algorithms [29, 14, 13, 30, 38]. They ei-
ther focus on variants of cross-view correlations considering
the discriminative label information [13, 30], or incorporate
the label information in an ad-hoc way [38]. In [14], the
image set recognition requires abundant views, which is not
always available in generic multi-view recognition problems.
In [29], the second view of multi-dimensional training labels
is nevertheless incompatible with generic multi-view recog-
nition problems or missing data recognition problems. In
[31], Tommasi et al. address a different problem (the bias
between datasets) also with a latent space model.

In addition, there are previous papers addressing related
problems [7, 12, 28]. They either focus only on the missing
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Figure 1: A latent space framework, with the train-
ing and testing processes shown in blue and yellow,
respectively.

view case [7], or the random missing features case [12], or
adopt a totally different learning concept such as the multi-
modal deep learning [28].

On the contrary, our proposed method directly seeks t-
wo similarity preserving projections to reveal the common
semantic latent space, thus it is capable of addressing both
the systematic and random missing feature problems as well
as the cross-view verification problem.

3. FORMULATION
In this section, the recognition problems are first formal-

ized, followed by the overview of the latent space model as
well as the proposed SLCCA algorithm.

3.1 Problem Formalization
Let X(1) ∈ Rp×n and X(2) ∈ Rq×n denote the observa-

tions from the first and the second view of n training pairs,
with each column of the X(1) and X(2) representing a p-

dimensional and q-dimensional feature, X(1) = [x
(1)
1 , · · · ,x(1)

n ]

and X(2) = [x
(2)
1 , · · · ,x(2)

n ]. The training label vector is
y = [y1, y2, · · · , yn]T , yi ∈ {1, · · · , c}, with c denoting the
number of classes. In summary, the multi-view training fea-

tures and labels are denoted as triplets2 {x(1)
i ,x

(2)
i , yi}ni=1.

Unlike classical multi-view problems with testing data in

pairs like {x̃(1)
i , x̃

(2)
i }

nt
i=1, three special cases of recognition

tasks with incomplete or misaligned nt testing samples are

considered: (1) testing data lacks the 2nd view, {x̃(1)
i }

nt
i=1;

(2) testing data is a single view observation taken randomly

from the 1st or 2nd view, {x̃(vi)
i }nt

i=1, where random variable
vi satisfies Pr(vi = 1) = Pr(vi = 2) = 0.5; (3) testing da-

ta has both views, but misaligned, {x̃(1)
i }

nt
i=1 and {x̃(2)

j }
nt
j=1,

but x̃
(1)
k and x̃

(2)
k are not guaranteed to come from the same

source for any specific k.

3.2 Latent Space
To address the aforementioned challenges, we propose to

construct a semantic latent space where the imperfect test-
ing data can be projected onto. Ideally, the projection-
s retain the discriminative information and assimilate the

2Both measurements x
(1)
i and x

(2)
i come from the same

source i, but in distinctive view (1) and view (2).
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view differences, converting the aforementioned problems in-
to conventional classification/verification tasks as outlined
in Fig. 1.

Let A(1) ∈ Rn×d and A(2) ∈ Rn×d denote projection ma-
trices for the 1st and 2nd view, respectively. Kernelization
and centralization are applied to all available training data,
which leads to the Gram matrices K(1) and K(2),

K(v) = [κ
(v)
1 , · · · ,κ(v)

n ], v = 1, 2. (1)

with the element at the ith row and jth column being,

K(v)(i, j) = 〈x(v)
i ,x

(v)
j 〉H, i, j = 1, · · · , n

where 〈·, ·〉H denotes the inner product defined in a Repro-
ducing Kernel Hilbert space.

3.3 Similarity Measure
After kernelization, we continue to project these observa-

tions onto a latent space, which captures the common se-
mantics with relatively low dimension. This is realized by
multiplying the kernel matrices with the projection matrices

A(v) ∈ Rn×d, v = 1, 2. Consider the matrix Rvv′
with its

(i, j)th element being

Rvv′
(i, j) = 〈A(v)Tκ

(v)
i ,A(v′)Tκ

(v′)
j 〉

= κ
(v)T
i A(v)A(v′)Tκ

(v′)
j . (2)

In the normalized latent subspace, the inner product serves
as a natural criterion for measuring distances, i.e., larger
inner products indicate smaller angles3 between projected

vectors A(v)Tκ
(v)
i and A(v′)Tκ

(v′)
j , and vice versa. Inspired

by [34, 35], the angles between the projected vectors are
utilized to estimate the similarity between the vectors in this
paper. Therefore, if the following constraints are imposed,

Rvv′
(i, j)

{
≥ cij if yi = yj

≤ c′ij if yi 6= yj
, (3)

where the thresholds cij , c
′
ij are properly selected to match

the dataset4, the similarity between the projected vectors

A(v)Tκ
(v)
i and A(v′)Tκ

(v′)
j can be regulated with respect to

their labels, i.e., keeping pairs close if they share the same
class label and simultaneously separating pairs apart if they
differ in class labels.

3.4 Similarity Learning CCA
For notational simplicity, we define the aggregated pro-

jection matrices G =
[
A(1)T ,A(2)T

]T
. The optimization

3Assuming unit vector norms.
4The choices of cij , c

′
ij are subtle, which need to strike a

balance between the feasibility of the optimization and the
effects of similarity learning. Details are provided in the
following Section 5.

target of the SLCCA algorithm is,

max
G

tr
(
K(1)K(2)TL2GGTLT

1

)
(4)

s.t. κ
(1)T
i L1GGTLT

2 κ
(2)
j

{
≥ cij if yi = yj

≤ cij otherwise
(5)

κ
(1)T
i L1GGTLT

1 κ
(2)
j

{
≥ cij if yi = yj

≤ cij otherwise
(6)

κ
(1)T
i L2GGTLT

2 κ
(2)
j

{
≥ cij if yi = yj

≤ cij otherwise
(7)

GTΓ(K)G = I (8)

where L1
def
= [In, 0n], L2

def
= [0n, In], and

Γ(K) =

[
K(1)K(1)T + λI 0

0 K(2)K(2)T + λI

]
, (9)

and λ is a small constant number added to eliminate numer-
ical issues.

Note that Eq. (4) and Eq. (8) are equivalent to the s-
tandard CCA [13] target, i.e., maximizing the correlations,
because in Eq. (4),

tr
(
K(1)K(2)TL2GGTLT

1

)
(10)

=tr
(
GTLT

1 K(1)K(2)TL2G
)

(11)

=tr
(
A(1)TK(1)K(2)TA(2)

)
(12)

=

d∑
i=1

α
(1)T
i K(1)K(2)Tα

(2)
i (13)

=

d∑
i=1

α
(1)T
i Σ(1,2)α

(2)
i , (14)

where α
(1)
i and α

(2)
i in Eq. (13)–(14) denote the ith col-

umn of A(1) and A(2), respectively. Therefore, α
(1)T
i K(1)

and α
(2)T
i K(2) in Eq. (13) denote the ith pair of canonical

variables. Σ(1,2) = K(1)K(2)T denotes the cross-covariance
matrix between the two views. Note similar to the stan-
dard CCA, normalization of the variables is also required.
Plugging Eq. (9) into Eq. (8) leads to

GTΓ(K)G

=
[
A(1)T A(2)T

]
Γ(K)

[
A(1)

A(2)

]
= A(1)T

(
K(1)K(1)T + λI

)
A(1)

+ A(2)T
(
K(2)K(2)T + λI

)
A(2) = I, (15)

which is a relaxed version of the following two constraints E-
q. (16)–(17) (ignoring the scaling constant),

A(1)T
(
K(1)K(1)T + λI

)
A(1) = I, (16)

A(2)T
(
K(2)K(2)T + λI

)
A(2) = I. (17)

Eq. (16)–(17) are the standard CCA orthogonal constraints
in matrix equations form. For example, Eq. (16) is equiva-
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lent to

α
(1)T
i Σ̂

(1,1)
α

(1)
i = 1, i = 1, · · · , d (18)

α
(1)T
i Σ̂

(1,1)
α

(1)
j = 0, i, j = 1, · · · , d, i 6= j, (19)

where α
(1)
i and α

(1)
j denote the ith and jth column of A(1),

respectively, and Σ̂
(1,1)

= K(1)K(1)T + λI is the regularized
covariance matrices in the first view.

The compact format of Eq. (15) is preferable to Eq. (16)–
(17) due to it is easier to optimize with respect to G using a
LP solver. Empirically, Eq. (15) gives highly similar results
to that produced by Eq. (16)–(17).

In addition to the standard CCA target Eq. (4) and con-
straint Eq. (8), additional constraints of Eq. (5)–(7) are in-
cluded to impose the cross-view similarity and intra-view
similarity conditions. Plugging the equations A(1) = L1G
and A(2) = L2G into Eq. (5)–(7) leads to the aforemen-
tioned similarity preserving constraints detailed in Eq. (3).

Unfortunately, the optimization problem in Eq. (4)–(8) is
a generic quadratically constrained quadratic program (QC-
QP) problem and it is NP-hard [23, 26]. In order to approx-
imate the solution with reasonable computational complex-
ity, in the following Section 4 we first adopt relaxations to
the problem, and subsequently develop an efficient iterative
solution to it.

4. RELAXATION AND SOLUTION
To alleviate the computational difficulty of optimizing the

objective function in Eq. (4)–(8), we apply the SDP relax-
ation techniques presented in [23] and propose the approxi-
mate solutions, accordingly.

As a standard step of SDP relaxation, an extra positive
semidefinite matrix MG relevant to the original optimization
variable G need to be defined. The definition of MG deter-
mines how the original constraint in Eq. (8) is relaxed. As
later shown in Eq. (26), we choose a conservative definition
of MG with dimension5 of 2n× 2n. Ideally,

MG = GGT =

[
A(1)A(1)T A(1)A(2)T

A(2)A(1)T A(2)A(2)T

]
. (20)

However, if Eq. (20) holds exactly, the optimization is i-
dentical to (i.e., as difficult as) the original QCQP prob-
lem. Hence in stead of requiring MG = GGT , we relax it
to MG − GGT � 0 (following [23]), and using the Schur’s
complement, this constraint is equivalent to[

MG G
GT Id

]
� 0. (21)

With Eq. (21) defined, the original constraint in Eq. (8)
can be readily relaxed to Eq. (26), where only the trace6

of Γ(K)MG is fixed instead of a series of constraints on
each element of the GTΓ(K)G. Empirically, a large number
of constraints drastically increase the computational burden
and even make the optimization infeasible, and this relax-
ation reduces the number of constraints7, which makes the
practical solution of Eq. (22)–(28) possible.

5Alternative relaxations are presented in the appendix.
6It is also the trace of GTΓ(K)G.
7From d2, the total number of element in matrix GTΓ(K)G
down to 1.

max
G,MG

tr
(
K(1)K(2)TL2MGLT

1

)
(22)

s.t. κ
(1)T
i L1MGLT

2 κ
(2)
j

{
≥ cij if yi = yj

≤ cij otherwise
(23)

κ
(1)T
i L1MGLT

1 κ
(2)
j

{
≥ cij if yi = yj

≤ cij otherwise
(24)

κ
(1)T
i L2MGLT

2 κ
(2)
j

{
≥ cij if yi = yj

≤ cij otherwise
(25)

tr (Γ(K)MG) = d (26)

MG = MT
G (27)[

MG G
GT Id

]
� 0, (28)

Note that the problem in Eq. (22)–(28) takes the stan-
dard form of an SDP, hence it is convex and theoretically
solvable with the standard interior point methods. However,
in common visual recognition scenarios, the total dimension
of variables in MG and G are too large for the off-the-shelf
SDP solvers, and it is known that a large scale SDP problem
is computational prohibitive [23]. Therefore we further re-
lax the problem in Eq. (22)–(28) to the following alternating
optimization where a computational efficient linear program
is adopted instead.

max
MG

tr
(
K(1)K(2)TL2MGLT

1

)
+ µtr

(
GTMGG

)
(29)

s.t. κ
(1)T
i L1MGLT

2 κ
(2)
j

{
≥ cij if yi = yj

≤ cij otherwise
(30)

κ
(1)T
i L1MGLT

1 κ
(2)
j

{
≥ cij if yi = yj

≤ cij otherwise
(31)

κ
(1)T
i L2MGLT

2 κ
(2)
j

{
≥ cij if yi = yj

≤ cij otherwise
(32)

tr (Γ(K)MG) = d (33)

MG = MT
G, GTMGG = I (34)

and

max
G

tr
(
GTMGG

)
(35)

s.t. GTG = I (36)

By alternating optimizing with respect to MG and G using
Eq. (29)–(34) and Eq. (35)–(36), respectively, the aggregat-
ed projection matrix G can be obtained. As for the selec-
tion of parameters and initialization, these details are given
in the following Section 5. Whilst this alternating process
could not necessarily find the global optimum G specified
in Eq. (4)–(8), it is guaranteed to find at least a strong lo-
cal minimum such that no further perturbations increase
Eq. (29) and Eq. (35).

5. DATASETS AND SETTINGS
The experiments are conducted on four different multi-

view datasets, i.e., the RGBD Object dataset [16], the NYU
Depth V1 Indoor Scenes dataset [27], the multi-spectral
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Figure 2: Examples of multi-view image pairs. Left
to right, top to bottom, [16] RGB/depth, [27] RG-
B/depth; [4] RGB/infrared, [36] grayscale/depth.

scene dataset [4] and Binghamton University 3D Facial Ex-
pression dataset [36]. Examples are shown in Fig. 2.

For the missing data recognition task, two types of miss-
ing schemes are considered. First the systematic missing
scheme is included, where both views are present in the
training phase, but the second view is nonexistent in the
testing phase. The alternative type is the random missing
scenario, where both views are present in the training phase,
but the testing data contains only a single view (either the
first view or the second view), chosen randomly according
to a Bernoulli distribution with probability p = 0.5.

With all four datasets, we test our proposed method a-
gainst competing ones in both missing data scenarios, i.e.,
the complete missing of second view case and the random
missing case. In addition, with the Binghamton University
3D Facial Expression dataset, we also conducted the cross-
view identity verification task, whose target is to determine
whether the “depth-face” and “image-face” pairs come from
the same person. Regarding the off-the-shelf recognition al-
gorithms, the LIBSVM [5] is adopted for classification while
the joint Bayesian verification algorithm [6, 18, 19] is adopt-
ed for verification.

While evaluating the performance, we adopted five com-
peting algorithms, namely, SVM/Raw, SVM-2K*, KCCA,
RGCCA, and DCCA. With both missing data recognition
tasks, the baseline is the direct application of the SVM. For
the complete missing of second view scenario, one SVM is
learned only on the first view training data, and tested on
the first view testing data. For the random missing sce-
nario, two SVM are separately learned on two views, and
the testing data is processed by the corespondent SVM. For
the cross-modal verification task with the Binghamton Uni-
versity 3D Facial Expression dataset, the “Raw” approach
directly trains a joint Bayesian verification algorithm based
on the similar/dis-similar cross-view pairs without any la-
tent space projections.

Termed as the “SVM-2K*”, this approach is a naive ex-
tension of “SVM-2K” [11] to the missing data scenario of
multi-view learning, in which we train with both views, but
test with only the first view classifier or corresponding sin-
gle view classifier, in the “missing 2nd view” and “missing
randomly” scenarios, respectively. The “KCCA” approach
also adopts the latent space framework in Fig. 1, however, it
maximizes the nonlinear correlation between the first view
and the second view so as to construct a pair of projection
vectors iteratively using the standard kernelized CCA [13].
After obtaining the latent space, subsequent SVM or joint
Bayesian verification algorithm is applied in this latent s-
pace. “RGCCA” and “DCCA” are two extended versions of
the “KCCA”, they are different from “KCCA” only in replac-

ing the standard kernelized CCA [13] with the algorithms
proposed in [30] and [38], respectively.

In the following experiments, the RBF kernel is applied
to both the KCCA algorithm and the SVM algorithms. The
bandwidth parameter in the RBF kernel, the parameters in
the SVM-2K* algorithm, λ and µ in the proposed approach
are all determined by a 4-fold cross validation. The data
dependent thresholds cij in Eq. (30)–(32) are determined as
follows. First, the proposed algorithm is initialized with the
projection matrix G0 learned by the KCCA algorithm 8,
and MG0 = G0G

T
0 . Then the initial original values c0ij are

computed using the Eq. (30)–(32), respectively (e.g., with

Eq. (30), c0ij = tr(κ
(1)T
i L1MG0L

T
2 κ

(2)
j )). After obtaining

the c0ij values, a contraction/expansion process is applied
as follows. cij = (1 + ε)c0ij if yi = yj , and cij = (1− ε)c0ij
otherwise, where the scalar ε ∈ [0 : 0.05 : 0.5] is determined
by a cross validation.

6. EXPERIMENTAL RESULTS
In this section, the proposed method is tested against com-

peting algorithms on four real world datasets with two miss-
ing data recognition tasks and one cross-modal verification
task.

6.1 UW RGBD Dataset
The RGBD object dataset [16, 3] consists of paired RGB

images and depth maps of multiple object instances from 51
categories. Without loss of generality, we assign the RGB
images as the first view, and the depth maps as the second
view. We focus on the instance level object recognition with-
in each of the categories, and demonstrate that the proposed
SLCCA paired with the discriminative latent space mod-
el can facilitate better recognition based on the single view
data, or randomly interlaced single view data. We follow
[16] to construct the “leave-sequence-out” training/testing
split9, and [3] to extract the HMP-based features from both
views.

The recognition results under the “missing 2nd view” s-
cenario and “missing randomly” scenario are illustrated in
Fig. 3 and also summarized in Table 1. Due to the dras-
tic change of recognition difficulties among the categories10,
the recognition accuracies fluctuate significantly. To allevi-
ate the difficulty of comparison, the SVM is selected as a
baseline with its accuracies plotted at the bottom in both
the “Missing 2nd View” and “Missing Randomly” cases. The
recognition accuracies of the remaining algorithms are first
subtracted by the SVM baseline and the differences are sit-
uated at the top in both cases.

With the case of missing the second view (Fig. 3(a)), the
SVM-2K* variant offers no significant improvements against
the baseline SVM approach, while the KCCA and RGCCA
both offer marginally better recognition results. The DCCA
approach is better with an average recognition accuracy of
94.6%, but not as high as our proposed SLCCA approach,
which achieves 95.1% accuracy. Again with the random
missing scheme, in Fig. 3(b), although the recognition ac-

8The KCCA algorithm is needed both for a reasonable ini-
tialization and also for faster practical convergence.
9This is a fixed split scheme, hence neither standard devia-
tion nor t-test is applicable.

10For example, it is much harder to distinguish three toma-
toes than distinctive brands of cellphones.
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Figure 3: Multi-View RGBD Object Instance Recognition from all 51 categories and average results (in per-
centage). For both case (a) Missing 2nd View and case (b) Missing 2nd View, the accuracies of SVM baseline
are situated at the bottom, while the differences of subtracting SVM accuracies from the corresponding,
remaining algorithms are situated at the top. The Average accuracies across all 51 categories for both cases
are situated furthest to the right.

curacy varies a lot across categories, the proposed approach
offers obvious performance boost against competing algo-
rithms, achieves an average accuracy of 90.0%.

Table 1: Multi-View RGBD Object Instance Recog-
nition, average results across all 51 categories.

Missing SVM
SVM-
2K*

KCCA
RG-
CCA

DCCA SLCCA

2nd View 92.6 93.4 93.9 93.9 94.6 95.1
Randomly 86.4 87.1 87.6 88.2 88.6 90.0

6.2 NYU Indoor Scenes Dataset
Collected by a custom made Kinect sensor, the NYU-

Depth-V1-Indoor Scene Dataset [27] consists of RGB-depth
image pairs of 7 classes of indoor scenes. This multi-channel
capturing scheme enables us to examine a wide range of
missing-data recognition scenarios. First, two types of view
assignments are considered. As shown in Table 2, L+D de-
notes the case where the luminance channel (i.e., the grayscale
image, which is obtained by converting from the RGB chan-
nels) feature is assigned as the first view, while the depth
channel as the second view, and RGB+D denotes the case
where the first view consists of features extracted indepen-
dently from all the R,G and B channels and then concate-
nated, while the depth channel feature is regarded as the
second view.

For the missing data profile, we consider both the system-
atic missing scheme and the random missing scheme detailed

in Section 5, which are denoted as “Missing 2nd View” and
“Missing Randomly” in Table 2, respectively. We consider
two types of features: both the lower dimensional GIST [21]
features and the higher dimensional spatial pyramid bag-
of-feature representation [17]. All these features are firstly
extracted independently from the respective channel (lumi-
nance, R, G, B or depth channel). For the spatial pyramid
bag-of-feature representation, we densely extract SIFT de-
scriptors from 40 × 40 patches with a stride of 10 pixels,
and use two dictionary of size (200 and 800) for the k-means
clustering. We denote these two feature extraction schemes
as SP200 and SP800 in Table 2, respectively.

The experimental data are randomly split into 50 folds
of training data and testing data with comparable number
of samples (following [27]). The proposed and the compet-
ing algorithms are tested and the mean and the standard
deviation of the recognition accuracies (in percentage) are
summarized in Table 2, with three different kinds of feature
matching schemes, two types of missing data scenarios and
two sets of view assignments.

It can be observed that the higher dimensional and more
sophisticated spatial pyramid bag-of-feature representation
is capable of achieving higher recognition accuracies than the
lower dimensional GIST features. Also, the random missing
scheme generally poses a more challenging problem than the
systematic missing scheme, due to the phenomenon that the
first view (grayscale or RGB images) is intrinsically more in-
formative than the second view (depth maps) in determining
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Table 2: NYU Depth V1 Indoor Scenes
Settings GIST, Missing 2nd View GIST, Missing Randomly

Views L+D RGB+D L+D RGB+D
SVM 59.61±3.42 61.33±3.32 42.17±4.72 43.43±5.87
SVM-2K* 58.26±3.71 60.92±3.80 42.47±4.33 43.51±4.82
KCCA 59.33±6.92 61.58±6.28 43.43±5.44 43.67±4.32
RGCCA 58.97±5.83 62.15±4.85 44.43±4.52 45.22±5.11
DCCA 60.37±4.23 62.98±4.37 44.88±6.10 45.52±4.08
SLCCA 60.45±6.89 62.87±5.92 46.22±5.12 47.08±4.71
Settings SP200, Missing 2nd View SP200, Missing Randomly

Views L+D RGB+D L+D RGB+D
SVM 63.24±3.61 65.01±4.05 45.59±4.12 46.60±3.88
SVM-2K* 60.37±4.25 61.23±4.93 44.52±5.25 46.76±4.65
KCCA 63.37±5.29 64.22±5.41 46.02±4.30 46.68±5.31
RGCCA 63.04±4.83 63.85±5.37 46.22±5.31 46.70±5.27
DCCA 65.90±4.76 65.22±5.69 47.02±6.20 46.98±4.82
SLCCA 66.02±7.69 66.29±6.49 48.98±5.13 49.92±4.98
Settings SP800, Missing 2nd View SP800, Missing Randomly

Views L+D RGB+D L+D RGB+D
SVM 64.63±3.13 65.72±3.75 46.80±3.37 48.59±4.62
SVM-2K* 59.73±4.32 61.82±4.49 45.47±4.38 47.65±5.73
KCCA 65.14±5.72 65.56±6.23 48.20±3.31 48.60±3.28
RGCCA 65.09±5.39 66.16±5.43 48.60±4.69 48.88±5.88
DCCA 65.76±5.07 66.44±5.02 48.92±5.34 49.06±6.21
SLCCA 66.79±5.94 67.26±6.54 51.46±4.33 52.02±4.27

the scene types, especially the highly clutter indoor scenes
in this dataset.

Comparing the results from these algorithms, we note that
the variant of SVM-2K* fails to achieve significant perfor-
mance advantage over the baseline SVM algorithm. We
would like to point out that SVM-2K [11] was formulat-
ed as a multi-view learning algorithm without considering
the missing data case, and the simple extension to the miss-
ing data case may not satisfy the assumption of the “pre-
diction consistency” regularization. The competing KCCA,
RGCCA and DCCA algorithms provide various degrees of
performance enhancements but not as significant as the pro-
posed SLCCA approach. Conducting the t-tests for the 12
settings in Table 2, the proposed SLCCA approach signif-
icantly outperforms the baseline SVM algorithm 8 and 2
times with confidence level 0.95 and 0.90, respectively.

6.3 Multi-Spectral Scene Dataset
With these experimental results on the multi-spectral scene

dataset [4], we demonstrate the efficacy of our proposed ap-
proach in missing-data resilient scene recognition, with both
the systematic missing scheme (“Missing 2nd View”) and the
random missing scheme (“Missing Randomly”). The multi-
spectral scene dataset [4] consists of 477 paired RGB and
near-infrared (IR) images from 9 different scene categories.

In line with [4], the RGB images are first converted to
the LAB color space, subsequently the GIST [21] features
are extracted independently on each of the L, A, B and IR
channels. Two view assignments are considered, i.e., L+I de-
notes GIST features extracted from the luminance channel
and the IR channel are assigned as the first view and the sec-
ond view, respectively; and LAB+I denotes GIST features
extracted independently from the L, A and B channels are
concatenated to form the first view, while those extracted
from the IR channel are considered as the second view. Fol-
lowing [4], we construct 50 random training/testing splits,
and the mean and the standard deviation of the recognition
accuracies (in percentage) are reported in Table 3.

From Table 3, despite the large standard deviations (due
to the large intra-class variations [4]), we note that the

Table 3: Multi-Spectral Scenes
Settings Missing 2nd View Missing Randomly
Views LAB+I L+I LAB+I L+I
SVM 67.78±5.25 61.82±3.77 42.11±5.56 38.02±4.69
SVM-2K* 67.17±5.58 61.82±4.59 42.80±5.42 38.22±4.30
KCCA 67.87±4.76 62.32±4.81 44.21±4.89 39.08±5.61
RGCCA 68.59±3.94 62.22±3.96 46.02±3.36 40.73±5.28
DCCA 70.51±2.37 65.66±4.57 46.60±5.40 41.22±4.61
SLCCA 71.22±3.26 66.12±4.68 49.18±4.92 43.64±5.21

LAB+I assignments are generally better than the L+I, which
is consistent with the LAB+I assignment being more in-
formative. Again, the random missing scheme is generally
more challenging than the systematic missing scheme, also
due to the limited discriminative power in the second view.
With the competing algorithms, neither the KCCA nor the
SVM-2K* algorithm achieves a significant advantage over
the SVM baseline. The more flexible RGCCA and DCCA
algorithms marginally outperform the baseline SVM algo-
rithm. As anticipated, the proposed SLCCA achieves the
highest accuracies and it significantly outpeforms the SVM
baseline in all four cases of Table 3 in t-tests at confidence
level 0.99.

6.4 Binghamton 3D Facial Expression dataset
For the experiment on this Binghamton 3D Facial Expres-

sion dataset [36], we demonstrate the efficacy of our pro-
posed approach in both the missing data recognition prob-
lems and the cross-modal verification problem. We show
that by collegially modeling the discriminative model based
on two views, various visual recognition tasks (expression,
gender, and race recognition) with missing data could be
improved. In addition, we demonstrate the effectiveness of
the proposed approach in recover the semantic correspon-
dences with cross-modal identity verification (determining
whether a pair of image-face and depth-face come from the
same person).

The Binghamton dataset [36] consists of 3D face models as
well as face images of 100 subjects (with both genders and a
variety of ethnic/racial ancestries, i.e., White, Black, East-
Asian, Middle-east Asian, Indian, and Hispanic Latino) of 7
facial expressions (happiness, disgust, fear, angry, surprise,
sadness and neutral). We extract all the frontal face images
and the frontal face depth maps from the 3D point clouds,
and feed them to the Eigen-PEP model [6, 18, 19] to extract
features independently on the grayscale images and on the
depth maps, respectively. Unlike 3D face features such as
[33, 20] that require manual labelling of facial landmarks,
our features are automatically generated without the need
of these facial landmark labels.

Following conventions, we assign the image features as
the first view and the depth features as the second view.
For statistical stability, 50 random training/testing splits are
constructed, with equal number of subjects as training and
testing samples. While constructing these splits, we adopt
an exclusive-identity protocol, i.e., we make sure that any
individual appearing in the training set never simultaneously
appears in the testing set, and vice versa. The classification
algorithm is SVM using the LIBSVM [5], and the target is
to recognize the expression, gender, ethnic/racial ancestries
of the testing samples. The target of the verification is to
verify whether a facial image and a facial depth map come
from the same individual (regardless of expression variation-
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s), and the algorithm is based on the joint Bayesian verifica-
tion algorithm in [6, 18, 19], where 10000 pairs of similar and
dissimilar pairs are sampled and fed to the training process.

Table 4: Binghamton 3D Facial Expression
Settings Recognition:Missing 2nd View

Algorithms SVM KCCA DCCA SLCCA
expression 72.2±4.1 73.1±3.7 74.5±4.1 75.8±3.2
gender 92.1±3.2 89.4±4.1 92.6±5.3 92.8±3.8
race 72.0±3.9 74.1±4.2 75.2±5.2 78.1±4.3
Settings Recognition:Missing Randomly

expression 69.1±3.9 69.5±3.3 71.9±5.9 73.8±4.2
gender 87.4±4.2 88.6±3.5 89.5±4.4 89.6±3.5
race 64.0±4.2 66.2±3.7 66.5±5.3 68.4±4.3
Settings Cross-modal Verification

Algorithms Raw KCCA DCCA SLCCA
Accuracy 81.1±4.2 82.3±3.9 82.6±4.4 86.4±5.4

The recognition/verification accuracies (in percentage) are
summarized in Table 4. The missing data recognition results
are shown in the upper part of Table 4, with the systematic
missing scheme followed by the random missing scheme. In
both scenarios, we carried out recognition based on the ex-
pression, gender and race labels. In both the expression and
race recognition tasks, the proposed algorithm outperforms
the baseline SVM algorithm significantly in t-tests at confi-
dence level 0.99. The gender recognition task is different in
that only two classes (male and female) are present with po-
tentially larger intra-class variations, which could limit the
effectiveness of discriminative similarity learning algorithms.

In summary, the proposed algorithm achieves the highest
verification accuracy in the cross-modal identity verification
task, and it significantly outperforms the Raw method (de-
tailed in Section 5) in the t-test at confidence level 0.99.

6.5 Comparison of Algorithms
KCCA finds the latent space without explicitly resort-

ing to the labels; DCCA first encodes an extra view based
on training labels, and subsequently incorporates the la-
bel information by maximizing correlations between existing
views and the encoded view; unlike the previous two-step
way, the proposed SLCCA explicitly incorporates similar-
ity constraints inside the optimization target, which leads
to the best performance benchmarks in the aforementioned
experiments.

7. CONCLUSION
We have proposed a recognition framework casting the

multi-view information into a single semantic latent space
and developed the SLCCA algorithm to construct such a
latent space for the missing data recognition / verification
problem. The proposed algorithm explicitly preserves the
intra-class and inter-class relationships, and it is implement-
ed with relaxation and alternating optimization. Experi-
ments with four different datasets demonstrate that the pro-
posed method outperforms the competing ones.
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APPENDIX
A. ALTERNATIVE RELAXATIONS

In this appendix, two alternative relaxations to the one
presented in Section 4 are first presented, and followed by
brief comparisons.

Indeed, the relaxations proposed in Section 4 are not tight;
abundant works have been devoted to the QCQP relaxation-
s [23, 26] and many tighter relaxations exist, but they are
computational prohibitive while solving the practical scale
optimization problem in multimedia recognition. These al-
ternative relaxations are tighter approximations11, but they

11In the sense of enforcing Eq. (8).
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are not chosen for computational reasons and numerical is-
sues.

A.1 Alternative Relaxation 1
In stead of Eq. (26) in Section 4, this alternative relaxation

defines d distinctive MGj , where j = 1, 2, · · · , d to make the
constraints in Eq. (39) possible. Ideally,

MGj = G(:, j)G(:, j)T , j = 1, · · · , d, (37)

where G(:, j), j = 1, · · · , d denotes the jth column of matrix
G. However, the SDP relaxation only enforces Eq. (40)
instead of Eq. (37). Therefore, the optimization target is,

max
G,MG1,··· ,MGd

d∑
j=1

tr
(
K(1)K(2)TL2MGjL

T
1

)
(38)

s.t.

d∑
j=1

κ
(1)T
i L1MGjL

T
2 κ

(2)
j

{
≥ cij if yi = yj

≤ cij otherwise

d∑
j=1

κ
(1)T
i L1MGjL

T
1 κ

(2)
j

{
≥ cij if yi = yj

≤ cij otherwise

d∑
j=1

κ
(1)T
i L2MGjL

T
2 κ

(2)
j

{
≥ cij if yi = yj

≤ cij otherwise

tr (Γ(K)MGj) = 1, j = 1, · · · , d (39)

MGj = MT
Gj , j = 1, · · · , d[

MGj G(:, j)
G(:, j)T 1

]
� 0, j = 1, · · · , d (40)

The specific definition in Eq. (37) leads to Eq. (39), where
the d2 scalar equations in Eq. (8) are reduced to d scalar
equations in Eq. (39). Compared with Eq. (26), the number
of constraints d are still to large to practically enforce. Worse
still, there are d times more elements in MGj , j = 1, · · · , d
of Eq. (37) than the MG in Eq. (20).

A.2 Alternative Relaxation 2
Similar to Eq. (37), the ideal value of MG is vec(G)vec(G)T ,

and it is similarly relaxed and enforced in Eq.(43). There-
fore, the optimization target is:

max
vec(G),MG

d∑
j=1

tr
(
K(1)K(2)TL2MG(jj)LT

1

)
(41)

s.t.

d∑
j=1

κ
(1)T
i L1MG(jj)LT

2 κ
(2)
j

{
≥ cij if yi = yj

≤ cij otherwise

d∑
j=1

κ
(1)T
i L1MG(jj)LT

1 κ
(2)
j

{
≥ cij if yi = yj

≤ cij otherwise

d∑
j=1

κ
(1)T
i L2MG(jj)LT

2 κ
(2)
j

{
≥ cij if yi = yj

≤ cij otherwise

tr (Γ(K)MG(ji)) = δji, i, j = 1, · · · , d (42)

MG = MT
G,[

MG vec(G)
vec(G)T 1

]
� 0, j = 1, · · · , d (43)

where δji denotes the Kronecker delta and vec(G) denotes
the vectorization (column by column) of matrix G.

With this relaxation, the d2 scalar equations in Eq. (8) are
all kept in Eq. (42). Compared with Eq. (26), the number of
constraints d2 are so large that it is practically intractable.
Worse still, as defined in this relaxation, the MG is a huge
rank-one matrix of size 2nd× 2nd, which is well beyond the
capacity of current solvers.

B. ALTERNATING OPTIMIZATION
In this section, the derivation details of the proposed al-

ternating optimization method in Section 4 are presented.

B.1 Updating MG

After obtaining the large scale SDP problem, the following
modified EXT relaxation [23] is obtained by dropping the
last positive semidefinite constraint. We modify the EXT
relaxation to include an extra tr

(
GTMGG

)
term, which

links the constraints between the augmented variable MG

and the original variable G. Even with the extra term, the
modified EXT retains the property of a linear program and
can be efficiently solved by an off-the-shelf solvers such as
[9]. MG is obtained by solving the following linear program,

max
MG

tr
(
K(1)K(2)TL2MGLT

1

)
+ µtr

(
GTMGG

)
(44)

s.t. κ
(1)T
i L1MGLT

2 κ
(2)
j

{
≥ cij if yi = yj

≤ cij otherwise
(45)

κ
(1)T
i L1MGLT

1 κ
(2)
j

{
≥ cij if yi = yj

≤ cij otherwise
(46)

κ
(1)T
i L2MGLT

2 κ
(2)
j

{
≥ cij if yi = yj

≤ cij otherwise
(47)

tr (Γ(K)MG) = d (48)

MG = MT
G (49)

GTMGG = I. (50)

The optimization problem presented in Eq. (44)–(50) is a
linear program [23], hence a global optimal solution is guar-
anteed. In our experiments, we use the OPTI toolbox [9] to
solve this LP problem.

B.2 Updating G

Discarding irrelevant terms, the G is updated by the fol-
lowing optimization,

max
G

tr
(
GTMGG

)
s.t. GTG = I. (51)

Note that this is exactly the canonical correlation analysis

problem [13]. Note that G =
[
A(1)T ,A(2)T

]T
and n > d,

G can be obtained by Incomplete Cholesky factorization of
MG. Denote the SVD of MG be

MG = UΣUT = UΣ1U
T + UΣ2U

T , (52)

where Σ,Σ1,Σ2 are diagonal matrices with corresponding
non-negative singular values on their diagonals, and Σ1 con-
tains the largest d singular values while Σ2 containing the

remaining ones. G = UΣ
1/2
1 . In practise, an incomplete

Cholesky factorization is favored due to its computational
efficiency.

570



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move down by 23.83 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20150812082051
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     795
     352
     Fixed
     Down
     23.8320
     0.0000
            
                
         Both
         1
         AllDoc
         1
              

       CurrentAVDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     9
     10
     9
     10
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move left by 7.20 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20150812082051
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     795
     352
    
     Fixed
     Left
     7.2000
     0.0000
            
                
         Both
         1
         AllDoc
         1
              

       CurrentAVDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     9
     10
     9
     10
      

   1
  

 HistoryList_V1
 qi2base





