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Abstract. We examine an under-explored visual recognition problem,
where we have a main view along with an auxiliary view of visual infor-
mation present in the training data, but merely the main view is avail-
able in the test data. To effectively leverage the auxiliary view to train a
stronger classifier, we propose a collaborative auxiliary learning frame-
work based on a new discriminative canonical correlation analysis. This
framework reveals a common semantic space shared across both views
through enforcing a series of nonlinear projections. Such projections au-
tomatically embed the discriminative cues hidden in both views into the
common space, and better visual recognition is thus achieved on the test
data that stems from only the main view. The efficacy of our proposed
auxiliary learning approach is demonstrated through three challenging
visual recognition tasks with different kinds of auxiliary information.

1 Introduction

We explore a new visual recognition problem dealing with visual data of t-
wo views, where a main view along with an auxiliary view is present in the
training data. This particular vision problem attracts our attention, due to the
recent popularity of multi-sensory and multiple spectrum imaging, such as depth-
sensing and infrared (IR) sensing cameras, and hence the accumulation of labeled
multi-view visual data.

However, a “missing-of-auxiliary view” problem frequently occurs in the test
phase. This phenomenon could be incurred by sensor malfunction caused by, for
example, an adversarial sensing environment or insufficient bandwidth allowing
the transmission of only the main view data. In addition, the “missing view”
problem could also arise when processing a backlog of historical data without
an auxiliary sensing channel. Then a question naturally emerges: can visual
recognition on the main view benefit from such auxiliary information that only
exists in the training data?

Unlike conventional settings where training and testing data follow similar,
if not identical, probability distributions [1], this problem requires techniques
which can incorporate the beneficial information from the auxiliary view into
the training of a classification model that works only with the main view. We
shall emphasize that the problem studied in this paper is different from the
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domain adaptation and transfer learning problems [2–4] in computer vision. The
goal of most domain adaptation/transfer learning problems is to leverage existing
abundant labeled data in one domain to facilitate learning a better model in the
target domain with scarce labeled data, if at all. Essentially, the knowledge is
transferred from one data domain to a related but statistically different one. In
contrast, in our problem the data domain in the test phase (i.e., the main view)
is a proper subset of the training data domain that contains the auxiliary view
other than the main view.

In this sense, the problem we are addressing is more closely related to the
multi-view and multi-task learning problems. The previous work in multi-view
learning [5–7] has demonstrated that improved performance can be achieved by
synergistically modeling all views. As a matter of fact, the existing multi-view
recognition methods [5, 8, 9] emphasize heavily on properly combining per-view
information.

We adopt a verification-by-construction approach by showing that there ex-
ists at least one method that consistently presents higher recognition accuracy
on several multi-view visual datasets under this problem setting. In particular,
we propose to seek a common semantic space to capture the relevance between
the main and auxiliary views. This is achieved by a new discriminative canoni-
cal correlation analysis (DCCA) inspired by [10]. The new DCCA algorithm not
only takes supervised label information into consideration, but also concurrent-
ly optimizes multiple nonlinear projections with a guaranteed convergence. Our
DCCA algorithm is parallel to and even exceeds most previous CCA algorithms
which did not explore label information and pursued multiple projections one
by one.

With a desirable common semantic space, the auxiliary view information in
the training data is carried into a classifier defined in the common space. Subse-
quent tests are conducted by projecting the only available main view information
of the test data onto the common space and then applying the classifier obtained
in the training phase.

The primary contributions of this paper are: (1) we focus on an under-
explored visual recognition problem, i.e., the “missing-view-in-test-data” prob-
lem with real-world multisensory visual datasets; (2) we propose a new dis-
criminative canonical correlation algorithm together with a rigorous convergence
proof, and its efficacy is validated on three benchmarks.

The rest of the paper is organized as follows. Section 2 briefly summarizes the
related work. Section 3 formally defines the “missing-view-in-test-data” problem.
Section 4 formulates the proposed DCCA algorithm. Section 5 gives a solution
to the DCCA algorithm. Section 6 presents the experiments. Section 7 concludes
the paper.
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2 Related Work

Here we summarize the related work in domain adaptation, transfer learning,
and multi-view learning, and also highlight their differences from the “missing-
view-in-test-data” problem we investigate in the paper.

Recently, metric learning has been successfully applied to domain adapta-
tion/transfer learning problems [1][3]. These methods attempt to transfer dis-
criminative information from a source domain to a related but statistically d-
ifferent target domain. Metric learning based domain transfer methods can be
applied to various problems such as machine translation [5][2], multimedia in-
formation retrieval [11], and visual recognition [3][4].

It is noted that these methods assume abundant labeled training samples
present in the source domain. While in the target domain, there are a limited
number of labeled training samples. Therefore, it is difficult to directly train an
effective classifier using the scarce labeled data in the target domain. Then the
recent approaches such as [3][4] exploit the corresponding relationship between
the two domains to build a regularized cross-domain transform via techniques
such as metric learning and kernel learning [12] to fulfill knowledge transferring.
However, these domain transfer problems are different from the “missing-view-
in-test-data” problem we are tackling in the paper. In our problem, there exists
a bijection between every corresponding pair of the (main,auxiliary)-view obser-
vations in the training set, due to the intrinsic semantic consistency between the
two views.

The multi-view/multi-task learning, e.g., [5][8][9], endeavors to learn a princi-
pled fusion which combines information from two or more related but statistically
different views/tasks to achieve certain goals. It was demonstrated in [5] that
the learning performance does benefit from explicitly leveraging the underlying
semantic consistency between two views or among multiple views, which also
motivates us to leverage this cross-view semantic consistency appearing in our
problem. In our experiments shown in Section 6, a simple modification of the
SVM2K algorithm [5] is implemented and treated as a competing baseline.

Another line of related work which can benefit from the multi-view data may
be the co-training framework [13] proposed by Blum and Mitchell. Nevertheless,
it falls into semi-supervised learning, and cannot deal with missing views. In
[14], both the missing view and the domain transfer problem are considered,
however, the objective function ignores the discriminative label information. A
different RGBD-RGB data based object detection problem is addressed in [15]
where explicit 3D geometry information is modeled. Tommasi et al. [16] focus on
the dataset bias problem with a similar latent space model. In [17], a different
missing feature problem is addressed, where the features are missing randomly
in all dimensions, instead of the systematic absence of views in the multi-view
settings considered in this paper. In the deep learning community, multi-modal
deep learning systems such as [18] also show the robustness against missing
views. In another related field, Chen et al. [19] suggest boosting-based learning
with side information. Unlike our proposed latent space model, this method is
not straightforward in terms of handling multiple sets of side information. In



4 Q. Zhang, G. Hua, W. Liu, Z. Liu, Z. Zhang

the area of human perception and psychology, Shams et al. [20] show that hu-
mans recognize better in unisensory tests with previous multisensory experiences
than with the unisensory counterparts. Through establishing our proposed aux-
iliary learning framework, we show that this benefit also exists in the context
of visual recognition. We also note that there exists a discriminative CCA [21]
proposed for image set recognition where each sample consists of many observa-
tions/views. However, this CCA method exploits the correlations between sets of
observations, which require abundant views for the robust estimation of sample
covariance matrices. In contrast, our missing-view-in-test-data problem involves
many observations but only a few views and even a single view in the test phase,
so we are able to more easily exploit the correlations between views.

3 A Latent Space Model: Addressing Missing-View-in-
Test-Data

Suppose that m view observations z(i)
def
= (x1(i),x2(i)) (i = 1, 2, · · · ,m) are gen-

erated. Let x1(i) ∈ X1 and x2(i) ∈ X2 denote observations from the main view
and auxiliary view, respectively. We assume X1 ⊂ Rn1 and X2 ⊂ Rn2 , and define

Zdef
=X1 ×X2, so z(i) ∈ Z. Within the training dataset, there comes with a label

l(i) ∈ L for each observation z(i).

Unlike a conventional visual object recognition problem whose classifier fθ :
Z → L is obtained by the identification of the parameters θ = θ(z(1), z(2), · · · , z(m))
based on the training set, the “missing-view-in-test-data” problem requires a
classifier in the form of f̃θ̃ : X1 → L due to the missing auxiliary view in the
test data. To effectively incorporate the available information in the entire train-
ing set {z(i), l(i)}mi=1, this paper focuses on constructing the classifier f̃θ̃, where

θ̃ = θ̃(z(1), z(2), · · · , z(m), l(1), l(2), · · · , l(m)). To capture the information hid-
den in the auxiliary view x2(j) and training labels l(j), an intermediate space
S is constructed to maximally retain the discriminative information from both
views.

During this process, we construct projections p1(·) and p2(·) that map {x1(i)}mi=1

and {x2(i)}mi=1 to p1(x1(i)) ∈ S and p2(x2(i)) ∈ S, respectively. In S, the classi-
fication problem becomes easier: a discriminative classifier f : S → L (e.g., the
SVM classifier [22]) is trained based on {p1(x1(i)), l(i)}mi=1∪{p2(x2(i)), l(i)}mi=1.
The training process is shown in blue arrows in Fig. 1(a). In the test phase, the
test samples {x̂1(j)}kj=1 are first projected to p1(x̂(j)) ∈ S and subsequently fed
to the trained classifier f : S → L. The test process is shown in yellow arrows
in Fig. 1(a).

The success of the aforementioned latent space based approach depends on
not only the maximal preservation of the congruent information among views,
but also the discriminative label information acquired in constructing S. To
achieve this, we propose a discriminative canonical correlation analysis (DCCA)
algorithm, which simultaneously extracts multiple CCA projections and also in-
corporates the label information. In the following section, we formally formulate
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the optimization problem of DCCA and compare our proposed optimization
method against previous ones.

4 DCCA: Formulation

In this section, we formulate the DCCA algorithm and compare it with previous
related work. The classical Canonical Correlation Analysis (CCA) (see [23, 24,
11]) and its variants have been popular among practitioners for decades. In its
basic form, the CCA algorithm finds a pair of linear projection vectors that
maximize the linear correlation:

max
αj ,αk

αT
j Σjkαk

s.t. αT
j Σjjαj = 1 (j, k = 1, 2, · · · , J) (1)

where Σjk = E(xjx
T
k ), E denotes the mathematical expectation, and xj denotes

the observations in the jth view (j = 1, 2, · · · , J , J denotes the number of
distinct views in the multi-view data). In this way, αj and αk project the jth
and kth views to a one-dimensional space by computing the inner products
αT

j x̂j and αT
k x̂k, respectively. In practice, a latent space of more of dimension

d (d > 1) is often desired, hence this procedure in Eq. (1) needs to be repeated
d times. Alternatively, as shown in [11], the following formulation can be used
equivalently:

max
Aj ,Ak

tr(AT
j ΣjkAk)

s.t. AT
j ΣjjAj = I (j, k = 1, 2, · · · , J) (2)

where Aj = [αj(1), · · · ,αj(d)] contains all d projection vectors to form a d-
dimensional latent space. The projections are computed as AT

j x̂j and AT
k x̂k. To

preserve the semantic consistency between the jth and kth views, we strive to
make sure that AT

j x̂j and AT
k x̂k are as similar as possible, therefore maximizing

tr(AT
j ΣjkAk) as Eq. (2).

These CCA algorithms are extended to handle more than two views, which
are generally termed as the generalized CCA (gCCA) [11, 25]. However, among
the gCCA algorithms where per-view “correlations” are combined nonlinearly,
most of them cannot be solved in a closed form and require a computing scheme
to optimize the projections one by one. Also, the naive version of gCCA ignores
the discriminative information in the class labels provided in the training process.

To address these two potential issues, we propose a new algorithm, named as
Discriminative CCA (DCCA), which is inspired by [10]. It not only inherits the
guaranteed optimization convergence property, but also has two extended prop-
erties: 1) the simultaneous optimization of multiple CCA projections contributes
to better projection coefficients even in a kernelized version; 2) the pursuit of
DCCA incorporates the label view information. Empirically, we find that the
combination of 1) and 2) leads to performance gains across three challenging
visual datasets, as shown in Section 6.
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Starting from leveraging discriminative information like Loog et al. [26], we
first encode the training labels as the Jth view based on k-nearest neighbors (k-
NNs) of the training samples, where observations from all views are normalized
and concatenated and then used in computing k-NNs. Suppose that there are

C classes. For each labeled training sample x(0)
def
= [x1(0)T , · · · ,xJ(0)T ]T , we

consider its k-NNs x(i)
def
= [x1(i)T , · · · ,xJ(i)T ]T (i = 0, · · · , k, including itself

x(0)). We record their labels as L(i) (i = 0, · · · , k) accordingly. The encoded
label view for this training sample is a binary vector consisting of k+1 length-C
blocks.

After obtaining the label view, we can simultaneously optimize all d projec-
tions in the form of Aj (j = 1, 2, · · · , J) as follows:

arg maxA

J∑
j,k=1,j 6=k

cjkg
(
tr(AT

j ΣjkAk)
)

s.t. AT
j ΣjjAj = I (j = 1, 2, · · · , J) (3)

where A
def
= [A1, · · · , AJ ],Aj

def
= [αj(1), · · · ,αj(d)] projects xj to the d-dimensional

common semantic space, cjk is the selecting weights (either 0 or 1), and func-
tion g(·) is the view combination function (e.g., direct combination g(x) = x, or
squared combination g(x) = x2). The space dimension d is chosen such that each
diagonal element of AT

j ΣjkAk is positive, which implies that the observations
from all views are positively correlated. The Lagrangian of Eq. (3) is

F (A,Λ) =
∑
k 6=j

cjkg
(
tr(AT

j ΣjkAk)
)
− φ

∑
j

1

2
tr
(
ΛT

j (AT
j ΣjjAj − I)

)
(4)

where Λ
def
= [Λ1, · · · ,ΛJ ], Λj ∈ Rd×d is the multiplier, and φ is a scalar which is

equal to 1 if g(x) = x and 2 if g(x) = x2. The derivative of g(x) is denoted as
g′(x).

From Eq. (4), the following stationary equations hold:

1

φ

∑
k 6=j

cjkg
′ (tr(AT

j ΣjkAk)
)
ΣjkAk = ΣjjAjΛj ; A

T
j ΣjjAj = I (5)

In practice, a kernelized version of DCCA is often favored, because linear
correlations are not sufficient in modeling the nonlinear interplay among differ-
ent views. Suppose that Kj is the Gram matrix of the centered data points
[x1, · · · ,xJ ]. The empirical covariance is 1

nα
T
j KjKkαk, where αj is the coeffi-

cient vector and n is the number of training samples. Let Aj = [αj(1), · · · ,αj(d)]
and the empirical covariance matrix be 1

nA
T
j KjKkAk. Suppose that Kj can be

decomposed as Kj = RT
j Rj . We define the projection matrix Wj = RjAj , and

similarly define Wdef
= [W1, · · · ,WJ ]. The optimization objective function of the
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kernelized DCCA is

arg maxW

J∑
j,k=1,j 6=k

cjkg

(
tr(

1

n
WT

j RjR
T
k Wk)

)

s.t. WT
j

[
(1− τj)

1

n
RjR

T
j + τjIn

]
Wj = I (6)

Let us define Nj = (1 − τj) 1
nRjR

T
j + τjIn, where 0 < τ < 1 is a pre-specified

regularization parameter. Similar to Eq. (5), the following stationary equations
hold

1

φ

∑
k 6=j

cjkg
′
(

tr(
1

n
WT

j RjR
T
k Wk)

)
1

n
RjR

T
k Wk = NjWjΛj (7)

WT
j NjWj = I (8)

whose solution1 is presented in Section 5.

5 DCCA: Solution

In this section, a monotonically convergent iterative algorithm to solve the D-
CCA problem is presented. For generic g(·) and cjk value assignments, there is
no closed-form solution to Eq. (5) or Eq. (7). However, following [10], a similar
“PLS-type”, monotonically convergent iterative algorithm can be formulated.
For conciseness, we only present the details of this algorithm with the solution
to the problem in Eq. (7). Define the outer component Yj and inner component
Zj , respectively, as

Yj
def
=RT

j Wj (9)

Zj
def
=

1

φ

∑
k 6=j

cjkg
′
(

tr(
1

n
WT

j RjR
T
k Wk)

)
Yk (10)

Differentiating the Lagrangian with respect to Wj and setting the gradient to
zero, we obtain

RjZj = NjWjΛj ; WT
j NjWj = I (11)

From Eq. (11) and Eq. (10), we have

Λj = WT
j RjZj =

1

φn

∑
k 6=j

cjkg
′
(

tr(
1

n
WT

j RjR
T
k Wk)

)
WT

j RjR
T
k Wk (12)

where tr( 1
nWT

j RjR
T
k Wk) is assumed to be positive, cjk = 0 or 1, and due to the

definition of g′, Λj is a positive semi-definite matrix. From Eq. (11) and Eq. (12),

1 Note that Eq. (5) is a linear version of Eq. (7) and has a very similar solution. For
conciseness, the solution to Eq. (5) is omitted.
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we have ΛT
j Λj = ZT

j R
T
j N
−1
j RjZj . Since Λj has non-negative eigenvalues, Λj

can be obtained via the matrix square root [ZT
j R

T
j N
−1
j RjZj ]

1/2. Therefore,

Wj = N−1j RjZj

([
ZT

j R
T
j N
−1
j RjZj

]1/2)†
(13)

where † denotes the pseudoinverse of a matrix.
A monotonically convergent iterative algorithm is described in Algorithm 1.

Let f(W)
def
=
∑

k 6=j cjkg
(

tr( 1
nWT

j RjR
T
k Wk)

)
. Importantly, we have the follow-

ing proposition:

Proposition 1. f(W(s = 1)) ≤ f(W(s = 2)) ≤ f(W(s = 3)) ≤ . . . ≤ Cu < ∞
holds for all s ∈ N , where s denotes the iteration index and Cu is a constant
bound. This guarantees Algorithm 1 to converge monotonically.

Proof. Due to space limit, we defer the proof to the supplemental material. ut

Algorithm 1: A monotonically convergent iterative algorithm for DCCA

Input: Observations from all J views: xj , j = 1, · · · , J .
Output: J projection matrices Wj , j = 1, · · · , J .
Initialization:
Randomly initialize Wj(0), normalize them by

Wj(0)← N−1
j Wj(0)

([
Wj(0)TN−1

j Wj(0)
]1/2)†

, and compute the initial outer

components Yj(0) by Eq. (9).
for s = 0, 1, · · · until the convergence of Wj do

for j = 1, 2, · · · J do
update the inner components by Eq. (10):
Zj(s)← 1

φ

∑j−1
k=1 cjkg

′(tr( 1
n
YT
j (s)Yk(s + 1)))Yk(s + 1) +

1
φ

∑J
k=j+1 cjkg

′(tr( 1
n
YT
j (s)Yk(s)))Yk(s);

update the outer weighs by Eq. (13):

Wj(s + 1)← N−1
j RjZj(s)

([
Zj(s)

TRT
j N
−1
j RjZj(s)

]1/2)†
;

update the outer components by Eq. (9): Yj(s + 1)← RT
j Wj(s + 1);

end

end
return

6 Experiments

6.1 Compared Methods and Datasets

We compare the performances of the kernelized DCCA algorithm (paired with
the RBF SVM classifier) against the following algorithms: A vanilla “SVM”:
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that is trained on the main view of the visual information only. A variant of
“SVM2K” [5]: which we train with two views in the train phase but only use
one of the classifier due to the missing auxiliary view in the test phase2. The
“KCCA”: a kernel CCA based on the main view and the auxiliary view. The
“KCCA+L”: a kernel CCA based on the main view and the encoded label view,
it ignores the auxiliary view. The “RGCCA”: a kernel variant of the regularized
generalized CCA [10] based on the main view and the auxiliary view. As an
extended version of gCCA, it iteratively optimizes each one-dimensional projec-
tion vectors (one column of Wj), and all d columns of Wj are pursued one by
one, similar to the algorithm presented in [24]. The “RGCCA+L”: similar to
“RGCCA”, except it is based on the main view and the encoded label view. The
“RGCCA+AL”: similar to the proposed DCCA, except it iteratively optimizes
each one-dimensional projection vectors (one column of Wj).

In selecting the competing algorithms, we choose the “SVM2K” to represent
a variant of multi-view learning algorithm. We select “KCCA” and “RGCCA”
to represent classical and recent implementations of the CCA algorithms, both
of which ignore the encoded label view. To isolate the effects of the auxiliary
view and encoded train label view, we have included a series of combinations
“KCCA+L”, “RGCCA+L” and “RGCCA+AL”. In the following experiments,
the RBF kernel is applied in both the KCCA algorithm and the SVM algorithms.
Parameters such as cjk, g(·), the bandwidth parameter in the RBF kernel, and
those parameters in the SVM2K algorithm, are all selected by a 4-fold cross
validation. The experiments are conducted on three different datasets, i.e., the
“NYU Depth V1” Indoor Scenes dataset ([27]), the RGBD Object dataset [28],
and the multi-spectral scene dataset [29]. The NYU Depth V1 dataset consists of
RGBD images of indoor scenes collected by a modified Kinect sensor [27]. With
this dataset, we demonstrate that the depth information in the train phase can
benefit the scene classification based solely on the RGB images. The RGBD
object dataset [28] consists of a large collection of paired RGB images and depth
maps of common objects. We focus on the instance level object recognition,
and demonstrate that the additional depth information during the train phase
can facilitate better recognition based on the RGB information only. The multi-
spectral scene dataset [29] consists of 477 registered and aligned RGB and near-
infrared (IR) images from 9 different scene categories, i.e., country, field, forest,
indoor, mountain, old-building, street, urban and water. In this experiment, we
demonstrate that the auxiliary information hidden in the IR channel can help
to train a better scene recognition model that operates only on the main view.

6.2 NYU-Depth-V1-Indoor Scene Dataset

On the NYU Depth V1 indoor scenes dataset [27], we carry out the multi-spectral
scene recognition task. Following [27], the scene observations are randomly split
into 10 folds with equal size of the train set and the test set. Subsequently, we

2 The original form of SVM2K is not directly applicable to the missing view problem
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Fig. 1: (a) A latent space model to address the “missing-view-in-test-data” prob-
lem. The training and test processes are displayed in blue and yellow arrows,
respectively. (b) k-NN retrieval from the NYU depth Indoor scenes data base.
Actual scene class labels are listed above each image.

Table 1: NYU Depth V1 Indoor Scenes Classification, the highest and second
highest values are colored red and blue, respectively.

Features GIST SP200 SP800

Views L+D RGB+D L+D RGB+D L+D RGB+D

SVM 59.57±3.31 60.79±3.12 64.11±3.11 64.71±3.95 64.73±2.79 65.34±3.18
SVM2K 57.52±3.88 60.01±3.71 59.62±3.23 60.42±4.55 58.00±3.58 60.64±3.84

KCCA 58.16±6.55 62.58±3.55 64.94±4.58 64.00±4.92 64.77±4.69 65.01±4.86
KCCA+L 58.48±3.37 59.95±3.62 62.99±3.80 60.67±4.23 62.26±3.56 60.55±4.40

RGCCA 58.66±5.93 59.75±4.11 60.49±5.21 60.31±5.75 61.70±4.00 60.42±3.68
RGCCA+L 59.12±4.11 59.82±4.50 63.34±4.18 62.48±3.49 63.81±4.51 61.04±4.99
RGCCA+AL 59.82±6.10 62.85±4.24 65.61±4.22 65.31±4.23 65.38±4.22 65.66±3.04

DCCA 60.26±3.86 63.60±3.43 66.20±3.69 65.35±4.72 66.09±4.18 66.28±4.16

extract both the GIST [30] features and the spatial pyramid bag-of-feature repre-
sentation [31] independently from each channel. For the latter, we densely extract
SIFT descriptors from 40 × 40 patches with a stride of 10 pixels, and use two
k-means dictionaries of sizes 200 and 800 to build the representation, which are
shorted as SP200 and SP800, respectively. While grouping the imaging channels
into views, we investigate the following two settings: (1) L+D: Grayscale image
features are assigned as the main view, while the depth features are assigned
as the auxiliary view. (2) RGB+D: RGB image features are concatenated and
assigned as the main view, while the depth features are assigned as the auxiliary
view.

We first demonstrate the k-NN retrieval results in Fig. 1(b) to visualize some
typical images from this dataset. The query images (from the test set) are dis-
played on the left and the corresponding 3 nearest neighbors (in the train set) are
displayed on the right. Clearly, this dataset consists of highly cluttered indoor
scenes, making this scene recognition task a challenging one.
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In Table 1, the means and standard deviations of the recognition accuracy (in
percentage) are reported. we observe that higher dimensional features offer better
accuracy and the color information also helps recognition slightly. Generally,
experiments based on “RGB+D” features achieve slightly higher accuracies than
their “L+D” counterparts.

In Table 1, the SVM2K-variant gives lower accuracies than the SVM baseline,
we speculate that the loose “prediction consistency” regularization of SVM2K-
variant is only helpful when two views satisfy certain distributions. In addition,
neither the KCCA nor the RGCCA approach sees significant performance im-
provements.

With the Label view alone, neither the “KCCA+L” nor the “RGCCA+L”
algorithm achieves any advantage over the baseline. Intuitively, the information
embedded in the label view is far less significant than that in the auxiliary view.
However, with both the label view and the auxiliary view, the “RGCCA+AL”
algorithm is capable of achieving a small advantage over the baseline, though not
as significant as the proposed DCCA algorithm, whose projections are optimized
and computed simultaneously and more accurately.

The large standard deviation in Table 1 stem from the difficult nature of the
datasets, which can be seen in the baseline SVM performance in Table 1.

6.3 RGBD Object Dataset

With this RGBD Object dataset from [28], we focus on the instance level object
recognition. There are multiple instances of objects across all the 51 categories,
the target is to correctly recover the object instance labels in the test set. We fol-
low the “leave-one-sequence-out” scheme in [28] and split recordings with camera
mounting angle of 30◦ and 60◦ as the train set and the remaining recordings as
the test set (the train/test sets are fixed, hence the standard deviation are not
defined). In this section, we present the results with the EMK-based features
[28] extracted from the RGB channels as the main view, and depth channel as
the auxiliary view. In addition, we have also verified the efficacy of the pro-
posed method with the state-of-the-art HMP-based features [32], but we defer
the detailed results and comments to the supplemental material due to limited
space.

As is seen in Table 2–3(too many entries to fit in a single page), the recogni-
tion accuracy (in percentage) within each category fluctuates significantly. With
some of the easy categories (e.g., “pitcher”), the baseline SVM algorithm already
achieves perfect recognition. However, with some of the challenging categories
(e.g., “food bag” and “lime”), the proposed DCCA offers the most significant
performance boost. Overall, the “KCCA+L” and the “RGCCA+L” algorithms
achieve a small advantage over the SVM baseline, both of which are inferior
to the RGCCA algorithm that only maximizes the main view and auxiliary
view correlation. However, the “RGCCA+AL” algorithm performs much better,
though not as good as the proposed DCCA algorithm. Among the 51 categories
in Table 2–3, the “RGCCA+AL” algorithm achieves the best and second best
accuracies in 8 and 24 categories, earning itself an overall average accuracy of
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85.7%. The proposed DCCA achieves the best and second best recognition ac-
curacies in 28 and 19 categories, acquiring an average accuracy of 86.6% across
all categories, highest among all algorithms.

6.4 Multi-Spectral Scene Dataset

Following [29], we construct 10 random training/testing splits. For each split,
99 RGB images (11 per category) are used as the test set while the remaining
378 pairs as the train set. Before the feature extraction, each RGB image is con-
verted to the LAB color space (similarly to [29]). Then the GIST [30] features
are computed independently on each of the channels. Of these four channels,
we choose the following two view assignment schemes: (1) L+I: Grayscale GIST
features and the IR channel GIST features are assigned as the main view and the
auxiliary view, respectively. (2) LAB+I: GIST features extracted independent-
ly from the L,A and B channels are concatenated as the main view, while those
extracted from the IR channel are considered as the auxiliary view. In Table 4,
the mean and the standard deviation (both in percentage) of the recognition
accuracies are reported. We observe that under either view assignment, nei-
ther the KCCA nor the SVM2K algorithm achieves a significant advantage over
the SVM baseline. With the label view alone, “KCCA+L” and “RGCCA+L”
achieve recognition accuracy on a par with the baseline SVM. We speculate that
the auxiliary view is more informative in this dataset: with the auxiliary view,
the RGCCA algorithm is capable of outperform the baseline by a small margin.
Furthermore, with the additional label view information in “RGCCA+AL”, this
margin is enlarged. Overall, the proposed DCCA still outperforms all other com-
peting algorithms. The large standard deviations in Table 4 could stem from the
nature of this dataset. Indeed, in [29], Brown and Susstrunk also report large
standard deviations on a par with ours.

6.5 Discussion

Overall, based on the aforementioned empirical results, we have the following ob-
servations. The latent space-based model is capable of leveraging the information
from the auxiliary view in training, and hence effectively address the missing-
view-in-test-data problem. Without the auxiliary view, the encoded label view
alone is not significant enough to evidently boost the recognition performance.
Incorporating the encoded label view with the auxiliary view yields some addi-
tional boost in recognition performance. DCCA consists of three components:
the incorporation of the auxiliary view, the encoded label view, and the simul-
taneous optimization. They jointly contribute to the performance gains.

7 Conclusions

In this paper, we explored a practical visual recognition problem, where we have
multi-view data in the train phase but only the single-view data in the test phase.
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Table 2: Accuracy Table Part 1 for the Multi-View RGBD Object Instance
recognition, the highest and second highest values are colored red and blue,
respectively. The remaining part is in Table 3.

Category SVM SVM2K KCCA
KCCA
+L

RGCCA
RGCCA
+L

RGCCA
+AL

DCCA

apple 65.2 72.4 77.6 64.8 79.0 68.1 76.7 77.6
ball 95.9 97.3 97.8 99.5 94.2 95.3 97.8 98.4
banana 74.2 61.1 80.3 71.7 77.3 77.3 80.3 80.3
bell pepper 71.3 59.8 69.3 65.7 66.1 68.9 69.3 69.3
binder 67.3 36.7 74.1 52.4 75.5 68.7 74.1 74.8
bowl 85.0 85.8 87.7 81.2 90.0 86.2 88.1 88.1
calculator 99.4 88.3 99.4 100 97.8 99.4 99.4 99.4
camera 91.7 49.6 97.5 90.1 96.7 95.9 97.5 97.5
cap 91.8 88.9 95.9 91.2 96.5 93.0 95.9 95.9
cellphone 93.2 81.7 96.3 93.2 94.2 95.3 96.3 96.3
cereal box 77.4 75.7 82.5 89.8 82.5 80.8 81.9 82.5
coffee mug 82.7 81.7 89.2 62.5 81.7 82.7 87.3 89.2
comb 97.3 96.0 99.3 100 98.7 98.7 99.3 100
dry battery 90.3 79.3 86.3 87.7 92.5 86.3 88.1 87.7
flashlight 77.1 75.0 80.3 74.5 78.2 77.7 81.4 82.4
food bag 72.7 69.1 80.8 82.5 84.9 77.7 86.6 89.2
food box 75.1 72.6 78.0 83.8 84.1 76.1 84.4 86.4
food can 70.0 63.7 70.7 78.2 73.7 66.2 81.0 83.7
food cup 87.1 86.4 84.9 94.5 83.8 84.2 90.1 91.5
food jar 84.5 81.0 88.6 86.1 85.8 85.4 88.3 88.9
garlic 95.5 93.3 92.2 95.5 89.0 91.2 92.8 93.3
glue stick 100 89.3 99.4 95.6 100 93.7 99.7 99.4
greens 75.7 70.3 82.2 84.9 74.6 80.5 81.1 82.2
hand towel 80.1 74.5 80.9 82.4 79.0 78.7 83.9 85.4
instant noodles 83.1 78.7 97.1 88.8 89.5 88.5 95.4 97.1
keyboard 88.1 82.7 90.6 88.1 93.6 88.1 95.0 95.0
kleenex 96.6 90.9 95.1 89.8 94.7 93.6 95.8 95.8
lemon 45.8 44.2 43.4 45.0 44.2 43.0 51.8 53.0
light bulb 93.2 92.5 95.9 98.6 95.9 95.2 95.2 95.9
lime 37.8 38.3 42.2 37.2 45.0 40.0 48.3 50.0
marker 48.4 39.3 46.0 48.4 49.9 46.2 46.6 46.9
mushroom 100 99.4 100 100 100 99.4 100 100
notebook 80.5 73.3 86.5 82.0 85.7 82.7 85.7 86.5
onion 91.5 86.4 88.6 94.0 93.1 88.6 93.4 93.4
orange 41.1 42.0 57.0 49.8 19.3 48.3 51.7 57.0
peach 100 74.2 100 97.4 99.3 98.7 100 100
pear 68.7 61.6 79.0 70.1 79.0 74.0 81.9 84.0
pitcher 100 100 100 100 100 98.3 100 100
plate 89.8 74.2 96.3 85.8 96.9 91.9 97.6 98.0
pliers 78.2 62.4 86.5 79.5 72.1 80.8 84.7 87.3
potato 62.9 65.6 70.3 71.8 64.5 67.6 69.1 70.3
rubber eraser 99.0 75.5 95.1 96.6 93.1 96.1 97.5 98.5
scissors 87.5 84.9 96.7 96.7 96.1 92.8 96.1 96.7
shampoo 84.5 82.9 94.5 82.3 95.5 89.0 94.2 94.8
soda can 89.6 87.8 91.0 97.7 92.8 88.7 95.5 96.8
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Table 3: Continued from Table 2: Accuracy Table Part 2 for the Multi-View
RGBD Object Instance recognition, the highest and second highest values are
colored red and blue, respectively.

Category SVM SVM2K KCCA KCCA+L RGCCA RGCCA+L RGCCA+AL DCCA

sponge 76.4 64.8 75.2 69.4 78.6 72.8 76.4 77.4
stapler 71.8 67.7 73.3 70.6 74.2 71.5 77.4 78.0
tomato 81.9 70.0 79.6 76.8 82.2 77.1 85.0 85.0
tooth brush 78.4 69.6 76.8 70.1 79.4 74.7 77.8 77.8
tooth paste 84.5 68.3 90.0 86.0 81.9 87.1 88.9 90.4
water bottle 88.2 88.2 90.6 82.6 80.2 87.4 89.3 90.6

average 81.3 74.4 84.5 81.6 83.0 81.8 85.7 86.6

Table 4: Multi-Spectral Scene recognition, the highest and second highest values
are colored red and blue, respectively.

Views SVM SVM2K KCCA KCCA+L

LAB+I 67.78±5.25 67.17±5.58 66.87±4.76 66.46±2.83
L+I 61.82±3.77 61.82±4.59 62.32±4.81 61.92±3.64

Views RGCCA RGCCA+L RGCCA+AL DCCA
LAB+I 68.59±3.94 67.27±4.88 69.90±3.16 70.51±2.37
L+I 62.22±3.96 62.42±4.45 64.55±3.44 65.66±4.57

We have verified that information from the auxiliary view in the train data can
indeed lead to better recognition in the test phase even when the auxiliary view is
entirely missing. As a part of our verification-by-construction proof, we have pro-
posed a new discriminative canonical correlation analysis to integrate and map
the semantic information from all views to a common latent space, over which
all subsequent classification is conducted. We also investigated and isolated the
effects of the encoded label view and the auxiliary view. The experimental re-
sults demonstrate that the proposed approach achieves performance advantages
on all three benchmarks.
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