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Abstract: In the realm of multi-modal visual recognition, the reliability of the data acquisition system is often a con-
cern due to the increased complexity of the sensors. One of the major issues is the accidental loss of one or more
sensing channels, which poses a major challenge to current learning systems. In this paper, we examine one of these
specific missing data problems, where we have a main modality/view along with an auxiliary modality/view present in
the training data, but merely the main modality/view in the test data. To effectively leverage the auxiliary information
to train a stronger classifier, we propose a collaborative auxiliary learning framework based on a new discriminative
canonical correlation analysis. This framework reveals a common semantic space shared across both modalities/views
through enforcing a series of nonlinear projections. Such projections automatically embed the discriminative cues
hidden in both modalities/views into the common space, and better visual recognition is thus achieved on the test data.
The efficacy of our proposed auxiliary learning approach is demonstrated through four challenging visual recognition
tasks with different kinds of auxiliary information.
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1. Introduction

In the realm of multi-spectral/multi-modal visual recognition,
we focus on an under-explored missing data problem with visual
data of two views *1, where a main view and an auxiliary view
are present in the training data, but only the main view is avail-
able in the testing data. This particular problem attracts our at-
tention, due to the recent popularity of multi-sensory and mul-
tiple spectrum imaging systems, such as the depth-sensing and
infrared (IR) sensing cameras, and hence the accumulation of la-
beled multi-view visual data.

However, the increased complexity of multiple data acquisi-
tion sensors incurs reduced reliability, especially the relatively
new IR/depth (i.e., the auxiliary) sensors. The higher probability
of failure of the auxiliary view sensors prompts us to investigate
proper measures to alleviate the impacts of the missing data.

Before a typical real-world deployment of these multi-view
sensing systems, multi-view, labeled training data is often col-
lected beforehand and readily available to the learning system.
However, due to the failure-prone nature of the auxiliary sen-
sors, the testing data could be completely deprived of the aux-
iliary view. This “missing-of-auxiliary-view” problem could oc-
cur in the test phase, possibly incurred by, for example, adversar-
ial sensing environments or insufficient bandwidth allowing the
transmission of only the main view data. In addition, the “miss-
ing view” problem could also arise while processing a backlog of
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historical data without the auxiliary sensing channel during the
time of collection. Therefore, a question naturally emerges: How
can the auxiliary view in the training data assist the visual recog-
nition based only on the main view?

Unlike conventional learning assumptions where the training
data and the testing data follow the identical probability distri-
bution [26], this problem requires techniques that can incorporate
the beneficial information from the auxiliary view into the train-
ing of a classification model that works only on the main view.
We shall emphasize that this problem is different from the do-
main adaptation or the transfer learning problems [9], [16], [28].
The goal of most domain adaptation/transfer learning problems
is to leverage existing abundant labeled data in one domain to fa-
cilitate learning a better model in the target domain with scarce
labeled data, if at all. Essentially, the knowledge is transferred
from one data domain to a related but statistically different one.
In contrast, in our problem the data domain in the test phase (i.e.,
the main view) is a proper subset of the training data domain that
contains the auxiliary view other than the main view.

In this sense, the problem of this paper is more closely re-
lated to the multi-view learning problems, but with the additional
missing data obstacle. The previous works in multi-view learn-
ing [10], [25], [40] have demonstrated that synergistically model-
ing of all views leads to improved performance. As a matter of
fact, the existing multi-view recognition methods [1], [10], [36]
emphasize heavily on properly combining per-view information.
In this paper, we adopt a verification-by-construction approach

*1 Following the definition in the multi-view learning problems, multiple
views in this paper are defined as multiple semantically related sensing
modalities, such as images, depth maps and infrared images of the same
object.
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by showing that there exists at least one method that consistently
outperforms in terms of recognition accuracy on four missing-
data multi-view visual recognition datasets with various settings
of view assignments, features and parameters.

In particular, we propose to seek a common latent space to
capture the semantic relevance between the main view and the
auxiliary view. This is achieved by a new discriminative canoni-
cal correlation analysis (DCCA) algorithm inspired by Ref. [34].
The new DCCA algorithm not only takes supervised label infor-
mation into consideration, but also concurrently optimizes mul-
tiple nonlinear projections with a guaranteed convergence. Our
DCCA algorithm is parallel to and even exceeds most previous
CCA algorithms which do not explicitly exploit the label infor-
mation or pursue multiple projections repeatedly in a one-by-one
manner. After obtaining the desired common latent space, the
auxiliary view information in the training data is carried into a
classifier defined in this latent space. Subsequent tests are con-
ducted by projecting the only available main view information of
the test data onto the common space and then applying the clas-
sifier trained on the aforementioned latent space.
The primary contributions of this paper are:
( 1 ) we focus on an under-explored multi-view visual recognition

problem, i.e., the “missing-view-in-test-data” problem with
real-world multisensory visual datasets;

( 2 ) we propose a new discriminative canonical correlation al-
gorithm together with a rigorous convergence proof, and its
efficacy is validated on four benchmarks.

The rest of the paper is organized as follows. Section 2 briefly
summarizes the related work. Section 3 formally defines the
“missing-view-in-test-data” problem. Section 4 formulates the
proposed DCCA algorithm. Section 5 gives a solution to the
DCCA algorithm. Section 6 presents the experiments. Section 7
concludes the paper. The convergence proof is also included in
the appendix of the paper.

2. Related Work

In this section, we summarize the related work in domain adap-
tation, transfer learning, multi-view learning, and also highlight
their differences from the “missing-view-in-test-data” problem
we investigate in the paper.

With the encouraging successes in applying metric learning
techniques to various problems (e.g., machine translation [9],
[10], multimedia information retrieval [13], and visual recogni-
tion [16], [28]), the metric learning methods have also found its
way into the visual recognition tasks, especially in the form of
domain adaptation and transfer learning [26], [28].

Among most of these domain adaptation and transfer learning
visual recognition problems, it is often assumed that abundant la-
beled training samples are present in the source domain; while in
the target domain, there are a limited number of labeled training
samples. The two domains are related in some semantic sense,
but in terms of the low-level features, the target and source do-
mains have statistically different distributions. Therefore, it is
infeasible to directly train an effective classifier using the scarce
labeled data in the target domain or train the classifier using the
labeled samples in the source domain of a different statistical dis-

tribution.
To overcome the aforementioned difficulties, these works (e.g.,

[16], [28]) attempt to transfer discriminative information from the
source domain to the target domain, exploiting the correspond-
ing relationship between the two domains to build a regularized
cross-domain transform via techniques such as metric learning
and kernel learning [17]. However, these domain transfer prob-
lems are different from the “missing-view-in-test-data” problem
we are tackling in the paper. In our problem, instead of having
the source/target domains, we have the auxiliary view and main
view. In the training phase, both views are labeled but in the test-
ing phase, only unlabeled main view is available.

Considering the existence of the main view and auxiliary
view in our focused problem of this paper, it is related to the
multi-view and multi-task learning problems. However, in our
“missing-view-in-test-data” problem, there is systematic miss-
ing of testing data, leaving only the main view data for testing.
The typical multi-view and multi-task learning problems, e.g.,
[1], [10], [36], require some principled fusion schemes which
combine information from two or more related but statistically
different views/tasks to achieve certain goals. Since the introduc-
tion of the early co-training framework [2] in dealing with multi-
modal data, various techniques have been proposed in this spe-
cific application area. A typical example is the SVM-2K algo-
rithm [10]. It was demonstrated in Ref. [10] that the recognition
performance does benefit from explicitly leveraging the underly-
ing semantic consistency among multiple views. In our experi-
ments shown in Section 6, a simple modification of the SVM2K
algorithm [10] is implemented and treated as a competing base-
line. However, the additional missing data obstacle is generally
not considered in these multi-view learning problems.

In Ref. [8], both the missing data and the domain transfer prob-
lems are considered, however, the objective function ignores the
discriminative label information. A different RGBD-RGB data
based object detection problem is addressed in Ref. [30] where
explicit 3D geometry information is modeled. Tommasi et al. [35]
focus on the dataset bias problem with a similar latent space
model. In Ref. [11], a different missing feature problem is ad-
dressed, where the features are missing randomly in all dimen-
sions, instead of the systematic absence of views in the multi-
view settings considered in this paper. In the deep learning com-
munity, multi-modal deep learning systems such as Ref. [32] also
show the robustness against missing views.

In another related field, Chen et al. [7] suggest boosting-based
learning with side information. Unlike our proposed latent space
model, this method is not straightforward in terms of handling
multiple sets of side information. In the area of human perception
and psychology, Shams et al. [29] show that humans recognize
better in unisensory tests with previous multisensory experiences
than with the unisensory counterparts. Through establishing our
proposed auxiliary learning framework, we show that this benefit
also exists in the context of machine recognition.

We also note that there exists a discriminative CCA [15] pro-
posed for image set recognition where each sample consists of
many observations/views. However, this CCA method exploits
the correlations between sets of observations, which require abun-
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dant views for the robust estimation of sample covariance matri-
ces. In contrast, our missing-view-in-test-data problem involves
many observations but only a few views and even a single view
in the test phase.

3. Missing View Resilient Latent Space Model

Suppose that m sensing channels are collecting data on a spe-
cific task, these observations are denoted as z(i)=(x1(i), x2(i)) (i =
1, 2, · · · ,m). Without loss of generality, Let x1(i) ∈ X1 and
x2(i) ∈ X2 denote observations obtained from the main view and
auxiliary view, respectively. We assume X1 ⊂ Rn1 and X2 ⊂ Rn2 ,
and define Z=X1 × X2, so z(i) ∈ Z. Within the training dataset,
there comes with a label l(i) ∈ L for each observation z(i).

Unlike the conventional supervised learning problem settings
where the classifier fθ : Z → L is normally obtained by the
inference of the parameters θ = θ(z(1), z(2), · · · , z(m)) based on
the training observations, the “missing-view-in-test-data” prob-
lem requires a classifier in the form of f̃θ̃ : X1 → L due
to the missing auxiliary view in the test data. To effectively
incorporate the available information in the entire training set
{z(i), l(i)}mi=1, this paper focuses on constructing the classifier f̃θ̃,
where θ̃ = θ̃(z(1), z(2), · · · , z(m), l(1), l(2), · · · , l(m)).

To capture the information hidden in the auxiliary view x2( j)
and training labels l( j), we propose to construct an intermedi-
ate space S to maximally retain the discriminative information
from both views. During this process, we construct projections

Fig. 1 (a) A latent space model to address the “missing-view-in-test-data”
problem. The training and test processes are displayed in blue and
yellow arrows, respectively. (b) k-NN retrieval from the NYU depth
Indoor scenes data base. Actual scene class labels are listed above
each image.

p1(·) and p2(·) that map {x1(i)}mi=1 and {x2(i)}mi=1 to p1(x1(i)) ∈ S
and p2(x2(i)) ∈ S, respectively. In S, the classification prob-
lem becomes significantly easier, as illustrated in Fig. 1 (a). A
conventional supervised classifier f : S → L (e.g., the SVM
classifier [5]) can be obtained by training with {p1(x1(i)), l(i)}mi=1∪
{p2(x2(i)), l(i)}mi=1. In the test phase, the test samples {x̂1( j)}kj=1 are
first projected to p1(x̂( j)) ∈ S and subsequently fed to the trained
classifier f : S → L. In Fig. 1 (a), the training processes and
the test processes are shown in blue arrows and yellow arrows,
respectively.

The success of the aforementioned latent space based approach
depends on not only the maximal preservation of the congruent
information among views, but also the discriminative label infor-
mation acquired in constructing S. To achieve this, we propose a
discriminative canonical correlation analysis (DCCA) algorithm,
which simultaneously extracts multiple CCA projections and also
incorporates the label information. In the following section, we
formally formulate the optimization problem of DCCA and com-
pare our proposed optimization method against previous ones.

4. DCCA Formulation

In this section, we formulate the DCCA algorithm and compare
it with previous related ones. The classical Canonical Correlation
Analysis (CCA) (see Refs. [13], [14], [38]) and its variants have
been popular among practitioners for decades. In its basic form,
the CCA algorithm finds a pair of linear projection vectors that
maximize the linear correlation:

max
α j ,αk

αT
j Σ jkαk (1)

s.t. αT
j Σ j jα j = 1 ( j, k = 1, 2, · · · , J) (2)

where Σ jk = E(x jxT
k ), E denotes the mathematical expectation,

and x j denotes the observations in the jth view ( j = 1, 2, · · · , J,
J denotes the number of distinct views in the multi-view data).
In this way, α j and αk project the jth and kth views to a one-
dimensional space by computing the inner products αT

j x̂ j and
αT

k x̂k, respectively. In practice, a latent space of more of dimen-
sion d (d > 1) is often desired, hence this procedure in Eq. (2)
needs to be repeated d times. Alternatively, as shown in Ref. [13],
the following formulation can be used equivalently:

max
A j ,Ak

tr(AT
j Σ jkAk) (3)

s.t. AT
j Σ j jA j = I ( j, k = 1, 2, · · · , J) (4)

where Aj = [α j(1), · · · , α j(d)] contains all d projection vectors to
form a d-dimensional latent space. The projections are computed
as AT

j x̂ j and AT
k x̂k. To preserve the semantic consistency between

the jth and kth views, we strive to make sure that AT
j x̂ j and AT

k x̂k

are as similar as possible, therefore maximizing tr(AT
j Σ jkAk) as

Eq. (4).
These CCA algorithms are extended to handle more than

two views, which are generally termed as the generalized CCA
(gCCA) [13], [27]. However, among the gCCA algorithms where
per-view “correlations” are combined nonlinearly, most of them
cannot be solved in a closed form and require a computing
scheme to optimize the projections one by one. Also, the naive
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version of gCCA ignores the discriminative information in the
class labels provided in the training process.

To address these two potential issues, we propose a new algo-
rithm, named as Discriminative CCA (DCCA), which is inspired
by Ref. [34]. It not only inherits the guaranteed optimization con-
vergence property, but also has two extended properties: 1) the si-
multaneous optimization of all CCA projections coefficients con-
tributes to numerically stable and optimal results; 2) the pursuit
of DCCA incorporates the label view information. Empirically,
we find that the combination of 1) and 2) leads to performance
gains across four challenging visual datasets in Section 6.

Starting from leveraging discriminative information like Loog
et al. [22], we first encode the training labels as the Jth view based
on k-nearest neighbors (k-NNs) of the training samples, where
observations from all views are normalized and concatenated and
then used in computing k-NNs. Suppose that there are C classes.
For each labeled training sample x(0)=[x1(0)T , · · · , xJ(0)T ]T , we
consider its k-NNs x(i)=[x1(i)T , · · · , xJ(i)T ]T (i = 0, · · · , k, in-
cluding itself x(0)). We record their labels as L(i) (i = 0, · · · , k)
accordingly. The encoded label view for this training sample is a
binary vector consisting of k + 1 length-C blocks.

After obtaining the label view, we can simultaneously optimize
all d projections in the form of Aj ( j = 1, 2, · · · , J) as follows:

arg maxA
∑J

j,k=1, j�k c jkg
(
tr(AT

j Σ jkAk)
)

(5)

s.t. AT
j Σ j jA j = I ( j = 1, 2, · · · , J) (6)

where A=[A1, · · · , AJ], Aj=[α j(1), · · · , α j(d)] projects x j to the d-
dimensional common semantic space, c jk is the selecting weights
(either 0 or 1), and function g(·) is the view combination func-
tion (e.g., direct combination g(x) = x, or squared combination
g(x) = x2). The space dimension d is chosen such that each diag-
onal element of AT

j Σ jkAk is positive, which implies that the obser-
vations from all views are positively correlated. The Lagrangian
of Eq. (6) is

F(A,Λ) =
∑
k� j

c jkg
(
tr(AT

j Σ jkAk)
)

(7)

− φ
∑

j

1
2

tr
(
ΛT

j (AT
j Σ j jA j − I)

)
(8)

where Λ=[Λ1, · · · ,ΛJ], Λ j ∈ Rd×d is the multiplier, and φ is a
scalar which is equal to 1 if g(x) = x and 2 if g(x) = x2. The
derivative of g(x) is denoted as g′(x).

From Eq. (8), the following stationary eqnarrays hold:

1
φ

∑
k� j

c jkg
′ (tr(AT

j Σ jkAk)
)
Σ jkAk = Σ j jA jΛ j (9)

AT
j Σ j jA j = I (10)

In practice, a kernelized version of DCCA is often favored, be-
cause linear correlations are not sufficient in modeling the nonlin-
ear interplay among different views. Suppose that K j is the Gram
matrix of the centered data points [x1, · · · , xJ]. The empirical co-
variance is 1

nα
T
j K jKkαk, where α j is the coefficient vector and n

is the number of training samples. Let Aj = [α j(1), · · · , α j(d)]
and the empirical covariance matrix be 1

n AT
j K jKkAk. Suppose

that K j can be decomposed as K j = RT
j R j. We define the projec-

tion matrix W j = R jA j, and similarly defineW=[W1, · · · ,WJ].

The optimization objective function of the kernelized DCCA is

arg maxW
∑J

j,k=1, j�k c jkg
(
tr( 1

n WT
j R jRT

k Wk)
)

(11)

s.t. WT
j

[
(1 − τ j) 1

n R jRT
j + τ jIn

]
W j = I (12)

Let us define Nj = (1 − τ j) 1
n R jRT

j + τ jIn, where 0 < τ < 1 is
a pre-specified regularization parameter. Similar to Eq. (10), the
following stationary eqnarrays hold

1
φ

∑
k� j

c jkg
′
(
tr(

1
n

WT
j R jRT

k Wk)

)
1
n

R jRT
k Wk = NjW jΛ j (13)

WT
j N jW j = I (14)

whose solution *2 is presented in Section 5.

5. DCCA Solution

In this section, a monotonically convergent iterative algorithm
to solve the DCCA optimization problem is presented. For
generic g(·) format and c jk value assignments, there are no closed-
form solutions to Eq. (10) or Eq. (13). However, following [34], a
similar “PLS-type”, monotonically convergent iterative algorithm
can be formulated. For conciseness, we only present the details of
this algorithm with the solution to the problem in Eq. (13). Define
the outer component Y j and inner component Z j, respectively, as

Y j = RT
j W j (15)

Z j =
1
φ

∑
k� j

c jkg
′
(
tr(

1
n

WT
j R jRT

k Wk)

)
Yk (16)

Differentiating the Lagrangian with respect to W j and setting the
gradient to zero, we obtain

R jZ j = NjW jΛ j (17)

WT
j N jW j = I (18)

From Eq. (18) and Eq. (16), we have

Λ j =WT
j R jZ j (19)

=
1
φn

∑
k� j

c jkg
′
(
tr(

1
n

WT
j R jRT

k Wk)

)
WT

j R jRT
k Wk (20)

where tr( 1
n WT

j R jRT
k Wk) is assumed to be positive, c jk = 0

or 1, and due to the definition of g′, Λ j is a positive semi-
definite matrix. From Eq. (18) and Eq. (20), we have ΛT

j Λ j =

ZT
j RT

j N−1
j R jZ j. Since Λ j has non-negative eigenvalues, Λ j

can be obtained via the matrix square root [ZT
j RT

j N−1
j R jZ j]1/2.

Therefore,

W j = N−1
j R jZ j

([
ZT

j RT
j N−1

j R jZ j

]1/2
)†

(21)

where† denotes the pseudoinverse of a matrix.
A monotonically convergent iterative algorithm is described in

Algorithm 1. Let f (W)=
∑

k� j c jkg
(
tr( 1

n WT
j R jRT

k Wk)
)
. Impor-

tantly, we have the following proposition:
Proposition 1
f (W(s = 1)) ≤ f (W(s = 2)) ≤ f (W(s = 3)) ≤ . . . ≤ Cu < ∞
holds for all s ∈ N , where s denotes the iteration index and Cu is a
constant bound. This guarantees Algorithm 1 to converge mono-
tonically. The proof of Proposition 1 is included in the appendix.

*2 Note that Eq. (10) is a linear version of Eq. (13) and has a very similar
solution. For conciseness, the solution to Eq. (10) is omitted.
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Algorithm 1: A monotonically convergent iterative algorithm
for DCCA

Input: Observations from all J views: x j, j = 1, · · · , J.

Output: J projection matrices W j, j = 1, · · · , J.

Initialization:

Randomly initialize W j(0), normalize them by

W j(0)← N−1
j W j(0)

([
W j(0)T N−1

j W j(0)
]1/2

)†
, and compute the initial

outer components Y j(0) by Eq. (15).

for s = 0, 1, · · · until the convergence of W j do
for j = 1, 2, · · · J do

update the inner components by Eq. (16):

Z j(s)← 1
φ

∑ j−1
k=1 c jkg

′(tr( 1
n YT

j (s)Yk(s + 1)))Yk(s + 1) +
1
φ

∑J
k= j+1 c jkg

′(tr( 1
n YT

j (s)Yk(s)))Yk(s);

update the outer weighs by Eq. (21):

W j(s + 1)← N−1
j R jZ j(s)

([
Z j(s)T RT

j N−1
j R jZ j(s)

]1/2
)†

;

update the outer components by Eq. (15):

Y j(s + 1)← RT
j W j(s + 1);

end
end

return

6. Experiments

In this section, the efficacy of the proposed DCCA algorithm is
verified in four visual recognition tasks and we also isolate each
component of the DCCA algorithm and analyze their contribu-
tions to the overall performance.

6.1 Compared Methods and Datasets
We compare the performances of the kernelized DCCA algo-

rithm (paired with the RBF SVM classifier) against the following
algorithms:
• SVM: The vanilla “SVM” is trained on the main view of the

visual information only.
• SVM-2K*: This is a variant of “SVM-2K” [10], which we

train with two views in the train phase but only use one of
the classifier due to the missing auxiliary view in the test
phase *3.

• KCCA: This is the kernel CCA based on the main view and
the auxiliary view.

• KCCA+L: a kernel CCA based on the main view and the
encoded label view, it ignores the auxiliary view.

• RGCCA: Regularized Generalized Canonical Correlation
Analysis [34], a kernel variant of the regularized generalized
CCA based on the main view and the auxiliary view. As an
extended version of gCCA, it iteratively optimizes each one-
dimensional projection vectors (one column of W j), and all
d columns of W j are pursued one by one, similar to the al-
gorithm presented in Ref. [38].

• RGCCA+L: similar to “RGCCA”, except it is based on the
main view and the encoded label view.

• RGCCA+AL: similar to the proposed DCCA, except it it-
eratively optimizes each one-dimensional projection vectors
(one column of W j).

In selecting the competing algorithms, we choose the “SVM-

*3 The original form of SVM-2K is not directly applicable to the missing
view problem

2K*” variant to represent the application of a crudely modi-
fied multi-view learning algorithm. We select “KCCA” and
“RGCCA” to represent classical and recent variants of the CCA-
type algorithms, both of which are based on the correlation be-
tween the main view and the auxiliary view, i.e., without ex-
plicitly considering the label view. In addition, to isolate the ef-
fects of the auxiliary view and encoded train label view, we have
also included a series of semi-finished DCCA algorithms, i.e., the
“KCCA+L”, “RGCCA+L” and “RGCCA+AL”, which have dif-
ferent components of the proposed DCCA algorithms. A brief
comparison table of these algorithms are given in Table 1.

In the following experiments, the Radial Basis Function (RBF)
kernel is applied in both the KCCA algorithm and the SVM algo-
rithms. Parameters such as c jk, g(·), the bandwidth parameter in
the RBF kernel, and those parameters in the SVM-2K* algorithm,
are all selected by a 4-fold cross validation. The experiments are
conducted on four different datasets, i.e., the “NYU Depth V1”
Indoor Scenes dataset ([31]), the RGBD Object dataset [18], the
multi-spectral scene dataset [4] and the Binghamton University
3D Facial Expression dataset [39].

The NYU Depth V1 dataset consists of RGBD images of in-
door scenes collected by a modified Kinect sensor [31]. With this
dataset, we demonstrate that the depth information in the train
phase can benefit the scene classification based solely on the RGB
images. The RGBD object dataset [18] consists of a large collec-
tion of paired RGB images and depth maps of common objects.
We focus on the instance level object recognition, and demon-
strate that the additional depth information during the train phase
can facilitate better recognition based on the RGB information
only. The multi-spectral scene dataset [4] consists of 477 regis-
tered and aligned RGB and near-infrared (IR) images from 9 dif-
ferent scene categories, i.e., country, field, forest, indoor, moun-
tain, old-building, street, urban and water. In this experiment, we
demonstrate that the auxiliary information hidden in the IR chan-
nel can help to train a better scene recognition model that operates
only on the main view. The Binghamton University 3D Facial Ex-
pression dataset [39] consists of 3D face models and correspond-
ing face images. With this dataset, we focus on three tasks of
visual recognition (gender, ethnic/racial ancestries, expressions)
with the aforementioned “missing-view-in-test-data” scenarios.

Table 1 A comparison of the competing algorithms and the proposed algo-
rithm in terms of training data and CCA-optimization method.

√
and × denote the specific part of training data is explicitly used
and ignored in the algorithm, respectively. There are no CCA-
optimization involved in the SVM or SVM-2K*, so ‘N/A’ is used,
meaning ‘Not Applicable’.

Algorithms
Main Aux. Label

CCA-OptimizationView View View
SVM

√ × × N/A
SVM-2K* [10]

√ √ × N/A
KCCA

√ √ × Eigen decomposition
KCCA+L

√ × √
Eigen decomposition

RGCCA [34]
√ √ × vector by vector

RGCCA+L
√ × √

vector by vector
RGCCA+AL

√ √ √
vector by vector

DCCA
√ √ √

simultaneous
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Table 2 NYU Depth V1 Indoor Scenes Classification, the highest and second highest values are colored
red and blue, respectively.

Features GIST Spatial Pyramid, K=200 Spatial Pyramid, K=800

Views L+D RGB+D L+D RGB+D L+D RGB+D

SVM 59.57±3.31 60.79±3.12 64.11±3.11 64.71±3.95 64.73±2.79 65.34±3.18
SVM-2K* [10] 57.52±3.88 60.01±3.71 59.62±3.23 60.42±4.55 58.00±3.58 60.64±3.84

KCCA 58.16±6.55 62.58±3.55 64.94±4.58 64.00±4.92 64.77±4.69 65.01±4.86
KCCA+L 58.48±3.37 59.95±3.62 62.99±3.80 60.67±4.23 62.26±3.56 60.55±4.40

RGCCA [34] 58.66±5.93 59.75±4.11 60.49±5.21 60.31±5.75 61.70±4.00 60.42±3.68
RGCCA+L 59.12±4.11 59.82±4.50 63.34±4.18 62.48±3.49 63.81±4.51 61.04±4.99
RGCCA+AL 59.82±6.10 62.85±4.24 65.61±4.22 65.31±4.23 65.38±4.22 65.66±3.04

DCCA 60.26±3.86 63.60±3.43 66.20±3.69 65.35±4.72 66.09±4.18 66.28±4.16

6.2 NYU-Depth-V1-Indoor Scene Dataset
On the NYU Depth V1 indoor scenes dataset [31], we carry out

the multi-spectral scene recognition task. Following Ref. [31],
these observations are randomly split into 10 folds with approxi-
mately equal number of the training samples and the testing sam-
ples. Subsequently, we extract both the GIST [24] features and
the spatial pyramid bag-of-feature representation [19] indepen-
dently from each imaging channel (Red, Green, Blue and Depth
channels). For the latter case concerning the spatial pyramid, we
densely extract SIFT descriptors from 40×40 patches with a stride
of 10 pixels, and use two k-means dictionary sizes of 200 and
800, which are denoted as “Spatial Pyramid, K=200” and “Spa-
tial Pyramid, K=800” in Table 2, respectively. While grouping
the imaging channels into views, we investigate the following two
settings:
• L+D: Grayscale image features are assigned as the main

view, while the depth features are assigned as the auxiliary
view.

• RGB+D: RGB image features are concatenated and as-
signed as the main view, while the depth features are as-
signed as the auxiliary view.

We first demonstrate the k-NN retrieval results in Fig. 1 (b) to
visualize some typical images from this dataset. The query im-
ages (from the test set) are displayed on the left and the corre-
sponding 3 nearest neighbors (in the train set) are displayed on
the right. As demonstrated in Fig. 1 (b), this dataset consists of
highly cluttered indoor scenes, making this scene recognition task
a challenging one.

In Table 2, the means and standard deviations of the recog-
nition accuracy (in percentage) are reported. We observe that
higher dimensional features generally offer better recognition ac-
curacy and the color information also helps recognition slightly.
Generally, experiments based on the “RGB+D” features achieve
slightly higher accuracies than their “L+D” counterparts. In Ta-
ble 2, the SVM-2K* variant produces lower accuracies than the
SVM baseline, we speculate that the loose “prediction consis-
tency” regularization of SVM-2K* variant is only helpful when
two views satisfy certain distributions. In addition, neither the
KCCA nor the RGCCA approach sees significant performance
improvements. With the encoded label view alone, neither the
“KCCA+L” nor the “RGCCA+L” algorithm achieves any advan-
tage over the SVM baseline. Intuitively, the information embed-
ded in the encoded label view is far less significant than that in the
auxiliary view. However, with both the label view and the auxil-

iary view, the “RGCCA+AL” algorithm is capable of achieving a
small advantage over the baseline, though not as significant as the
proposed DCCA algorithm, whose projections are optimized and
computed simultaneously and more accurately. The large stan-
dard deviation in Table 2 stem from the difficult nature of the
datasets, which can be estimated from the baseline SVM perfor-
mance in Table 2.

6.3 RGBD Object Dataset
With this RGBD Object dataset from Ref. [18], we focus on the

instance level object recognition. There are multiple instances of
the same class of object for all the 51 object categories; the recog-
nition target is to correctly recover the object instance labels in the
test set. We follow the “leave-one-sequence-out” scheme detailed
in Ref. [18] and split recordings with camera mounting angle of
30◦ and 60◦ as the training set and the remaining as the testing
set (the train/test sets are fixed, hence the standard deviation are
not applicable). In this section, we present the results with both
the EMK-based features [18] and the state-of-the-art HMP-based
features [3] extracted from the RGB channels as the main view,
and from the depth channel as the auxiliary view, respectively.

As is seen in Table 3, the recognition accuracy (in percent-
age) using the EMK-based features within each category fluctu-
ates significantly. This is due to the characteristic of the object
categories: e.g., different instances of limes resemble each other
a lot more than different instances of cereal boxes with different
logos.

With some of the easy categories (e.g., “pitcher”), the baseline
SVM algorithm already achieves perfect recognition. However,
with some of the challenging categories (e.g., “food bag” and
“lime”), the proposed DCCA offers the most significant perfor-
mance boost. Overall, the “KCCA+L” and the “RGCCA+L” al-
gorithms achieve a small advantage over the SVM baseline, both
of which are inferior to the RGCCA algorithm that only maxi-
mizes the main view and auxiliary view correlation. However,
the “RGCCA+AL” algorithm performs much better, though not
as good as the proposed DCCA algorithm. Among the 51 cate-
gories in Table 3, the “RGCCA+AL” algorithm achieves the best
and second best accuracies in 8 and 24 categories, earning it-
self an overall average accuracy of 85.7%. The proposed DCCA
achieves the best and second best recognition accuracies in 28 and
19 categories, acquiring an average accuracy of 86.6% across all
categories, highest among all algorithms. Alternatively, with the
new HMP-based features [3], the recognition results are summa-
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Table 3 Accuracy Table for the Multi-View RGBD Object Instance recog-
nition with EMK features, the highest and second highest values
are colored red and blue, respectively.

SVM-
KCCA

RG- RG RG-
Category SVM 2K* KCCA CCA -CCA CCA DCCA

[10]
+L

[34] +L +AL

apple 65.2 72.4 77.6 64.8 79.0 68.1 76.7 77.6
ball 95.9 97.3 97.8 99.5 94.2 95.3 97.8 98.4
banana 74.2 61.1 80.3 71.7 77.3 77.3 80.3 80.3
bell pepper 71.3 59.8 69.3 65.7 66.1 68.9 69.3 69.3
binder 67.3 36.7 74.1 52.4 75.5 68.7 74.1 74.8
bowl 85.0 85.8 87.7 81.2 90.0 86.2 88.1 88.1
calculator 99.4 88.3 99.4 100 97.8 99.4 99.4 99.4
camera 91.7 49.6 97.5 90.1 96.7 95.9 97.5 97.5
cap 91.8 88.9 95.9 91.2 96.5 93.0 95.9 95.9
cellphone 93.2 81.7 96.3 93.2 94.2 95.3 96.3 96.3
cereal box 77.4 75.7 82.5 89.8 82.5 80.8 81.9 82.5
coffee mug 82.7 81.7 89.2 62.5 81.7 82.7 87.3 89.2
comb 97.3 96.0 99.3 100 98.7 98.7 99.3 100
dry battery 90.3 79.3 86.3 87.7 92.5 86.3 88.1 87.7
flashlight 77.1 75.0 80.3 74.5 78.2 77.7 81.4 82.4
food bag 72.7 69.1 80.8 82.5 84.9 77.7 86.6 89.2
food box 75.1 72.6 78.0 83.8 84.1 76.1 84.4 86.4
food can 70.0 63.7 70.7 78.2 73.7 66.2 81.0 83.7
food cup 87.1 86.4 84.9 94.5 83.8 84.2 90.1 91.5
food jar 84.5 81.0 88.6 86.1 85.8 85.4 88.3 88.9
garlic 95.5 93.3 92.2 95.5 89.0 91.2 92.8 93.3
glue stick 100 89.3 99.4 95.6 100 93.7 99.7 99.4
greens 75.7 70.3 82.2 84.9 74.6 80.5 81.1 82.2
hand towel 80.1 74.5 80.9 82.4 79.0 78.7 83.9 85.4
instant noodles 83.1 78.7 97.1 88.8 89.5 88.5 95.4 97.1
keyboard 88.1 82.7 90.6 88.1 93.6 88.1 95.0 95.0
kleenex 96.6 90.9 95.1 89.8 94.7 93.6 95.8 95.8
lemon 45.8 44.2 43.4 45.0 44.2 43.0 51.8 53.0
light bulb 93.2 92.5 95.9 98.6 95.9 95.2 95.2 95.9
lime 37.8 38.3 42.2 37.2 45.0 40.0 48.3 50.0
marker 48.4 39.3 46.0 48.4 49.9 46.2 46.6 46.9
mushroom 100 99.4 100 100 100 99.4 100 100
notebook 80.5 73.3 86.5 82.0 85.7 82.7 85.7 86.5
onion 91.5 86.4 88.6 94.0 93.1 88.6 93.4 93.4
orange 41.1 42.0 57.0 49.8 19.3 48.3 51.7 57.0
peach 100 74.2 100 97.4 99.3 98.7 100 100
pear 68.7 61.6 79.0 70.1 79.0 74.0 81.9 84.0
pitcher 100 100 100 100 100 98.3 100 100
plate 89.8 74.2 96.3 85.8 96.9 91.9 97.6 98.0
pliers 78.2 62.4 86.5 79.5 72.1 80.8 84.7 87.3
potato 62.9 65.6 70.3 71.8 64.5 67.6 69.1 70.3
rubber eraser 99.0 75.5 95.1 96.6 93.1 96.1 97.5 98.5
scissors 87.5 84.9 96.7 96.7 96.1 92.8 96.1 96.7
shampoo 84.5 82.9 94.5 82.3 95.5 89.0 94.2 94.8
soda can 89.6 87.8 91.0 97.7 92.8 88.7 95.5 96.8
sponge 76.4 64.8 75.2 69.4 78.6 72.8 76.4 77.4
stapler 71.8 67.7 73.3 70.6 74.2 71.5 77.4 78.0
tomato 81.9 70.0 79.6 76.8 82.2 77.1 85.0 85.0
tooth brush 78.4 69.6 76.8 70.1 79.4 74.7 77.8 77.8
tooth paste 84.5 68.3 90.0 86.0 81.9 87.1 88.9 90.4
water bottle 88.2 88.2 90.6 82.6 80.2 87.4 89.3 90.6
average 81.3 74.4 84.5 81.6 83.0 81.8 85.7 86.6

rized in Table 4. As is seen in Table 4, the overall recognition
accuracy improves significantly across all methods, as compared
to the EMK-based ones in Table 3. In a large portion of the cat-
egories, perfect recognition is achieved even with the naive base-
line SVM algorithm. However, the advantage of the proposed
method is revealed in some of the challenging categories.

Overall, with the HMP-based features, “KCCA+L” and the
“RGCCA+L” algorithms cannot match the SVM baseline, and
the “SVM-2K*” and “KCCA” algorithms are only marginally
better than the baseline. The “RGCCA” and “RGCCA+AL” al-
gorithms offer some improvements, while the proposed DCCA
algorithm achieves the highest overall recognition accuracy. Con-

Table 4 Accuracy Table for the Multi-View RGBD Object Instance recog-
nition with HMP features, the highest and second highest values
are colored red and blue, respectively.

SVM-
KCCA

RG- RG RG-
Category SVM 2K* KCCA CCA -CCA CCA DCCA

[10]
+L

[34] +L +AL

apple 87.62 93.33 92.86 77.14 92.38 87.62 93.33 93.33
ball 100 100 100 100 100 100 100 100
banana 73.74 77.78 81.31 81.31 80.30 75.25 80.30 80.30
bell pepper 82.07 84.06 78.88 77.29 73.31 80.88 73.31 83.27
binder 100 100 100 100 100 100 100 100
bowl 83.08 86.54 86.54 86.15 87.31 77.69 87.69 87.69
calculator 100 100 100 99.44 100 100 100 100
camera 99.17 100 100 100 99.17 99.17 99.17 99.17
cap 100 100 100 100 100 97.08 100 100
cellphone 98.43 95.29 95.81 94.76 95.81 98.43 95.81 95.81
cereal box 100 100 100 100 100 100 100 100
coffee mug 92.88 85.45 96.90 94.43 99.69 91.64 99.69 100
comb 96.67 97.33 97.33 96.67 98.00 95.33 98.00 98.00
dry battery 86.34 84.14 85.46 76.65 87.67 85.90 88.55 88.55
flashlight 97.34 97.34 97.87 95.21 100 97.34 100 100
food bag 100 100 100 100 100 96.88 100 100
food box 100 99.84 100 99.84 100 100 100 100
food can 98.08 93.02 94.39 81.67 99.18 98.08 99.32 99.32
food cup 96.32 98.90 97.06 96.32 97.43 97.06 97.43 98.53
food jar 98.73 100 100 91.46 100 97.15 100 100
garlic 90.91 98.40 98.40 96.26 95.99 91.98 95.99 95.99
glue stick 100 100 100 100 100 99.68 100 100
greens 76.76 89.73 89.19 85.41 85.41 81.08 90.27 91.35
hand towel 99.63 100 100 100 100 99.63 100 100
instant noodles 100 99.51 99.76 99.76 100 100 100 100
keyboard 94.55 95.05 95.05 94.55 96.04 94.55 96.53 96.53
kleenex 98.87 97.36 97.36 96.98 98.87 98.87 98.87 98.87
lemon 45.02 47.41 47.41 45.82 47.81 44.62 47.81 47.81
light bulb 87.67 97.26 96.58 95.21 91.78 89.04 92.47 92.47
lime 67.78 62.22 61.11 58.33 62.78 68.33 62.78 62.22
marker 100 93.93 98.26 96.75 99.57 100 99.78 99.57
mushroom 99.42 100 100 100 100 99.42 100 100
notebook 100 100 100 100 99.62 100 100 100
onion 98.74 94.64 95.90 95.90 96.53 99.37 98.74 98.74
orange 72.46 97.58 99.03 98.07 96.62 69.57 99.03 99.03
peach 100 100 100 100 100 100 100 100
pear 90.04 93.24 90.75 90.04 91.81 88.61 91.81 93.95
pitcher 100 100 100 100 100 100 100 100
plate 99.66 100 100 99.32 95.59 100 99.32 99.32
pliers 92.58 89.96 90.39 90.39 93.45 92.58 93.45 93.45
potato 63.71 71.81 74.13 65.64 65.25 67.57 71.04 71.43
rubber eraser 69.61 75.49 71.57 69.61 70.59 74.02 70.59 71.08
scissors 100 100 100 100 100 100 100 100
shampoo 99.35 99.68 99.68 98.39 99.68 94.19 99.68 99.68
soda can 100 100 99.55 99.10 100 100 100 100
sponge 99.49 100 100 99.83 99.83 99.83 99.83 99.83
stapler 80.12 73.59 76.56 76.56 81.90 81.90 82.20 82.49
tomato 69.69 81.59 83.85 83.85 80.45 68.56 80.45 80.45
tooth brush 99.48 100 99.48 96.91 98.97 99.48 98.97 98.97
tooth paste 100 100 100 100 100 100 100 100
water bottle 97.32 95.98 95.71 94.64 96.25 96.78 96.25 96.25

average 92.62 93.35 93.87 91.85 93.93 92.40 94.35 94.62

sidering there are more than 13,000 testing samples, the two per-
cent performance improvement means correctly classifying an
additional amount of more than 200 samples.

6.4 Multi-Spectral Scene Dataset
Following Ref. [4], we construct 10 random training and test-

ing splits to evaluate our methods. For each random split, 99
RGB images (11 per category) are used as the testing set while
the remaining 378 pairs of RGB-IR images as the training set.
Before the feature extraction, each RGB image is converted to
the LAB color space (similarly to Ref. [4]). Then the GIST [24]
features are computed independently on each of the L, A, B and
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Table 5 Multi-Spectral Scene recognition, the highest and second highest
values are colored red and blue, respectively.

Views SVM SVM-2K* [10] KCCA KCCA+L

LAB+I 67.78±5.25 67.17±5.58 66.87±4.76 66.46±2.83
L+I 61.82±3.77 61.82±4.59 62.32±4.81 61.92±3.64

Views RGCCA [34] RGCCA+L RGCCA+AL DCCA
LAB+I 68.59±3.94 67.27±4.88 69.90±3.16 70.51±2.37
L+I 62.22±3.96 62.42±4.45 64.55±3.44 65.66±4.57

IR channels. To demonstrate the ubiquitous advantages of our
proposed methods, we have tested both the following view as-
signment schemes concerning these four sensing channels,
• L+I: Grayscale GIST features and the IR channel GIST fea-

tures are assigned as the main view and the auxiliary view,
respectively.

• LAB+I: GIST features extracted independently from the L,
A and B channels are concatenated as the main view, while
those extracted from the IR channel are considered as the
auxiliary view.

In Table 5, the mean and the standard deviation (both in per-
centage) of the recognition accuracies are reported. We observe
that neither the KCCA nor the SVM-2K* algorithm achieves
a significant advantage over the SVM baseline, in both the
“LAB+I” and the “L+I” view assignments.

With the label view alone, the “KCCA+L” algorithm and the
“RGCCA+L” algorithm achieve recognition accuracies on a par
with that of the baseline SVM. We speculate that the auxiliary
view is more informative: with the auxiliary view, the RGCCA
algorithm is capable of outperforming the baseline by a small
margin. Furthermore, with the additional label view information
in “RGCCA+AL”, this margin is enlarged. Overall, the proposed
DCCA still outperforms all other competing algorithms in both
the “LAB+I” and the “L+I” scenarios.

The large standard deviations in Table 5 could stem from the
nature of this dataset: the outdoor scenes lack homogeneity. In-
deed, in Ref. [4], Brown and Susstrunk also report large standard
deviations on a par with ours.

6.5 Binghamton University 3D Facial Expression Dataset
There are both the 3D models and conventional photos of the

100 subjects (with both genders and various ethnic/racial ances-
tries, i.e., White, Black, East-Asian, Middle-east Asian, Indian,
and Hispanic Latino) of 7 facial expressions (happiness, disgust,
fear, angry, surprise, sadness and neutral) in this dataset [39].
With this dataset, three types of recognition tasks with respect
to three different labels (expression, gender, and race) are inde-
pendently carried out.

First the grayscale face images and the depth face maps are ex-
tracted and fed to the Eigen-PEP model [6], [20], [21] to generate
features on both views independently. Unlike common 3D face
features such as Refs. [23], [37] that require manual labelling of
facial landmarks, our feature extraction is fully automatic without
the need of manual intervention, making it more suitable for large
scale real world applications.

We assign the features extracted from the grayscale images as
the main view and the features extracted from the depth maps as
the auxiliary view, respectively. For statistical stability, 50 ran-

Table 6 Expression, gender and ethnic/racial ancestries recognition based
on the Binghamton 3D Facial Expression dataset, the highest and
second highest values are colored red and blue, respectively.

Algorithms SVM KCCA DCCA

expression 72.2±4.1 73.1±3.7 74.5±4.1
gender 92.1±3.2 89.4±4.1 92.6±5.3
ethnic/racial 72.0±3.9 74.1±4.2 75.2±5.2

dom training and testing splits are constructed, with equal num-
ber of subjects as training and testing samples. While construct-
ing these splits, we adopt an exclusive-identity protocol, i.e., we
make sure that any individual appearing in the training set never
simultaneously appears in the testing set, and vice versa.

The recognition accuracies (in percentage) with respect to ex-
pression, gender and ethnic/racial ancestries recognition tasks are
summarized in Table 6. In both the expression and the eth-
nic/racial ancestry recognition tasks, the proposed DCCA algo-
rithm outperforms the competing ones by obvious margins. The
gender recognition task is comparably easier in the sense that
there are only two categories (male or female) and this could also
contribute to larger intra-class variations which limit the effec-
tiveness of the discriminative learning algorithms. In summary,
the proposed DCCA algorithm is capable of achieving higher ac-
curacies in various recognition tasks than the competing ones in
Table 6.

6.6 Discussion
Overall, based on the aforementioned empirical results, we

have the following observations.
• The latent space based model is capable of leveraging the

information from the auxiliary view in training, therefore,
the missing-view-in-test-data problem can be effectively ad-
dressed.

• Without the auxiliary view, the encoded label view alone is
not significant enough to evidently boost the recognition per-
formance.

• Incorporating the encoded label view with the auxiliary view
yields some additional boost in recognition performance.

• DCCA consists of three components: the incorporation of
the auxiliary view, the encoded label view, and the simul-
taneous optimization. They jointly contribute to the perfor-
mance gains.

7. Conclusions

In this paper, we explored a practical multi-view visual recog-
nition problem, where we have multi-view data in the training
phase but only the single view data in the test phase. We have
verified that information from the auxiliary view in the train-
ing data can indeed lead to better recognition in the test phase
even when the auxiliary view is entirely missing. As a part of
our verification-by-construction proof, we have proposed a ro-
bust collaborative multi-view learning framework with missing
data, in which a new discriminative canonical correlation analysis
method is developed to integrate the semantic information from
all views to a common latent space where all subsequent recogni-
tion is conducted. We have also investigated and isolated the ef-
fects of the encoded label view and the auxiliary view. The exper-
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imental results demonstrate that the proposed approach achieves
performance advantages on all four benchmarks.
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Appendix
In this appendix, we present the proof of the Proposition 1 in

Section 5. First, the existence of the upper bound is proven in Sec-
tion A.1, then the proof that the sequence f (W(s)), s = 1, 2, · · ·
is monotonic is presented in Section A.2. With the Bolzano-
Weierstrass theorem and the conclusions of Section A.1 and Sec-
tion A.2, the Proposition 1 is proven.

A.1 Proof: the existence of the bound Cu

From the constraint in Eq. (7) of the paper:

WT
j

[
(1 − τ j)

1
n

R jRT
j + τ jIn

]
W j = In, (A.1)

where τ j denotes the pre-specified regularization parameter, 0 <
τ j < 1 ( j = 1, 2, · · · , J), we have

(1 − τ j)tr

(
1
n

WT
j R jRT

j W j

)
+ τ jtr

(
WT

j W j

)
= n, (A.2)

and therefore ∀ j = 1, 2, · · · , J,
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tr
(
WT

j R jRT
j W j

)
≤ 1

1 − τ j
, 0 < τ j < 1. (A.3)

In addition, we have

tr
(
WT

j R jRT
k Wk

)
≤ 1

2
tr

(
WT

j R jRT
j W j

)
(A.4)

+
1
2

tr
(
WT

k RkRT
k Wk

)
(A.5)

≤ 1
2

[
1

1 − τ j
+

1
1 − τk

]
< ∞, (A.6)

where the inequality Eq. (A.5) follows the property

tr(BT A) ≤ 1
2

[
tr(AT A) + tr(BT B)

]
, (A.7)

which comes from the fact that tr
(
(A − B)T (A − B)

)
≥ 0, be-

cause the matrix (A − B)T (A − B) � 0. Since tr
(
WT

j R jRT
k Wk

)
is

bounded, g(x) = x or x2, we have

g
(
tr

(
WT

j R jRT
k Wk

))
≤ 1

4

[
1

1 − τ j
+

1
1 − τk

]2

< ∞. (A.8)

Considering c jk = 0 or 1, we have

J∑
j�k

c jk g

(
tr

(
1
n

WT
j R jRT

k Wk

))
(A.9)

≤ 1
4n

J∑
j�k

[
1

1 − τ j
+

1
1 − τk

]2

(A.10)

< ∞, (A.11)

which shows that the sequence f (W(s)), s = 1, 2, · · · is upper
bounded by

Cu =
1
4n

J∑
j�k

[
1

1 − τ j
+

1
1 − τk

]2

< ∞. (A.12)

A.2 Proof that the sequence f (W(s)) is mono-
tonically increasing

In this section, the monotonic property of the sequence
f (W(s)), s = 1, 2, · · · is presented. Following [12], [33], [34],
we first present a Lemma, and then prove that

f (W(s)) ≤ f (W(s + 1)), s = 1, 2, · · · , (A.13)

where s is the iteration index, s = 1, 2, · · ·.
Define the function r(Y j,Yk) as r(Y j,Yk)

def
= tr( 1

n YT
j Yk) =

tr( 1
n WT

j R jRT
k Wk), therefore,

f (W1(s), · · · ,WJ(s)) =
J∑

j,k=1,k� j

c jkg[r(Y j(s),Yk(s))]. (A.14)

Using this notation, we have the following Lemma:
Lemma 1
Define

f j(W j)
def
=

j−1∑
k=1

c jkg
[
r(RT

j W j,Yk(s + 1))
]

(A.15)

+

J∑
k= j+1

c jkg
[
r(RT

j W j,Yk(s))
]

(A.16)

s.t. WT
j N jW j = I, (A.17)

then

f j(W j(s)) ≤ f j(W j(s + 1)), j = 1, · · · , J. (A.18)

Proof.

We prove Lemma 1 in two cases, i.e., g(x) = x2 and g(x) = x.
Case 1: when g(x) = x2, we have f j(W j) in the following form,

f j(W j) =
j−1∑
k=1

c jk

(
r(RT

j W j,Yk(s + 1))
)2

(A.19)

+

J∑
k= j+1

c jk

(
r(RT

j W j,Yk(s))
)2
, (A.20)

which can be written as

f j(W j(s)) =
1
n

j−1∑
k=1

c jkθ
(s)
jk tr(W j(s)T R jYk(s + 1)) (A.21)

+
1
n

J∑
k= j+1

c jkθ
(s)
jk tr(W j(s)T R jYk(s)) (A.22)

=
1
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(
W j(s)T R j
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k=1

c jkθ
(s)
jk Yk(s + 1) (A.23)

+

J∑
k= j+1

c jkθ
(s)
jk Yk(s)

))
, (A.24)

where θ(s)
jk are defined as

θ(s)
jk = r

(
Y j(s),Yk(s + 1)

)
if k = 1, · · · , j − 1 (A.25)

θ(s)
jk = r

(
Y j(s),Yk(s)

)
if k = j + 1, · · · , J (A.26)

Note that in Eq. (A.24), the inner term
(∑ j−1

k=1 c jkθ
(s)
jk Yk(s + 1)

+
∑J

k= j+1 c jkθ
(s)
jk Yk(s)

)
is equivalent to the definition of Z j(s),

hence f j(W j) can be simplified as 1
n tr(WT

j R jZ j(s)). Considering
the following optimization problem:

maxW j

1
n

tr(WT
j R jZ j(s)), s.t. WT

j N jW j = I, (A.27)

whose solution is exactly

W j(s+1)=N−1
j R jZ j(s)

(
[Z j(s)T RT

j N−1
j R jZ j(s)]1/2

)†
(A.28)

we have

tr(W j(s)T R jZ j(s)) ≤ tr(W j(s + 1)T R jZ j(s)). (A.29)

Similarly, the following equations can be obtained:

f j(W j(s)) =
j−1∑
k=1

c jkθ
(s)
jk r(Y j(s),Yk(s + 1)) (A.30)

+

J∑
k= j+1

c jkθ
(s)
jk r(Y j(s),Yk(s)) (A.31)

≤
j−1∑
k=1

c jkθ
(s)
jk r(Y j(s + 1),Yk(s + 1)) (A.32)

+

J∑
k= j+1

c jkθ
(s)
jk r(Y j(s + 1),Yk(s)). (A.33)

Considering that c jk is either 0 or 1, we hence have c jk = c2
jk.

Applying the Cauchy-Schwartz inequality, we have
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We immediately have f j(W j(s)) ≤ f j(W j(s+ 1)). This concludes
the case 1 scenario.
Case 2: when g(x) = x, we have

f j(W j) =
j−1∑
k=1

c jkr(RT
j W j,Yk(s + 1)) (A.34)

+

J∑
k= j+1

c jkr(RT
j W j,Yk(s)). (A.35)

Therefore, we can have exactly the same equation as Eq. (A.24),
except that θ(s)

jk ≡ 1 for all the cases. The same equation
as in Eq. (A.29) can be obtained, which directly implies that
f j(W j(s)) ≤ f j(W j(s + 1)). This concludes both the case 2
scenario and the entire proof of Lemma. With the conclu-
sion in Lemma 1, we proceed with the proof that the sequence
f (W(s)), s = 1, 2, · · · is monotonically increasing. Consider the
following subtraction
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=
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−
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[
tr

(
1
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W j(s)T R jRT
k Wk(s)

) ]]
≥ 0. (A.42)

The last equation in Eq. (A.42) follows the Lemma 1. This im-
plies that

f (W1(s), · · · ,WJ(s)) ≤ f (W1(s+1), · · · ,WJ(s+1)) (A.43)

i.e., f (W(s)) ≤ f (W(s + 1)), s = 1, 2, · · · . (A.44)

Using Eq. (A.11), Eq. (A.44), the bounded sequence
f (W(s)), s = 1, 2, · · · is monotonically increasing.

According to the Bolzano-Weierstrass theorem, the sequence
will converge, i.e., Proposition 1 is proven.
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