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Abstract: During recent years, convolutional neural network (CNN)-based methods have been
widely applied to hyperspectral image (HSI) classification by mostly mining the spectral variabilities.
However, the spatial consistency in HSI is rarely discussed except as an extra convolutional channel.
Very recently, the development of pixel pair features (PPF) for HSI classification offers a new way
of incorporating spatial information. In this paper, we first propose an improved PPF-style feature,
the spatial pixel pair feature (SPPF), that better exploits both the spatial/contextual information
and spectral information. On top of the new SPPF, we further propose a flexible multi-stream
CNN-based classification framework that is compatible with multiple in-stream sub-network designs.
The proposed SPPF is different from the original PPF in its paring pixel selection strategy: only pixels
immediately adjacent to the central one are eligible, therefore imposing stronger spatial regularization.
Additionally, with off-the-shelf classification sub-network designs, the proposed multi-stream,
late-fusion CNN-based framework outperforms competing ones without requiring extensive network
configuration tuning. Experimental results on three publicly available datasets demonstrate the
performance of the proposed SPPF-based HSI classification framework.

Keywords: hyperspectral image classification; convolutional neural networks; spatial pixel pair features

1. Introduction

Hyperspectral image (HSI) classification deals with the problem of pixel-wise labeling of the
hyperspectral spectrum, which has historically been a heavily studied, but not yet perfectly solved
problem in remote sensing. With the recent development of hyperspectral remote capturing sensors,
HSIs normally contain millions of pixels with hundreds of spectral wavelengths (channels). The HSI
classification is intrinsically challenging. While more and more high-dimensional HSIs accumulate
and are made public available, ground truth labels remain scarce, due to the immense manual efforts
required to collect them. In addition, the generalization ability of neural networks is unsatisfactory if
they are trained with insufficient labeled data, due to the curse of dimensionality [1].

In the early days, conventional feature extraction and classifier design was popular among HSI
classification practitioners. Favuel et al. [2] provide a detailed review of recent advances in this area.
Many varieties of conventional features have been applied, including raw spectral pixels, spectral pixel
patches and their dimension reduced versions by methods such as principal component analysis [3],
manifold learning [4], sparse coding [5] and latent space methods [6–9]. Likewise, various conventional
classifiers have been applied, such as support vector machines [10], Markov random fields [11],
decision trees [12], etc. In particular, some early approaches have already tried the incorporation of
spatial information by extracting large homogeneous regions using majority voting [13], watershed [14]
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or hierarchical segmentation [15]. Those two-stage (Stage 1: feature extraction; Stage 2: classification.)
or multistage (in addition to the feature extraction stage and classification stage, there could be
additional pre-/post-processing stages) methods suffer from some limitations. Firstly, it is highly
time consuming to choose the optimal variant of conventional features and optimal parameter
values for different HSI datasets, due to their wildly different physical properties (such as the
number of channels/wavelengths) and visual appearances. Secondly, conventional classifiers have
recently been outperformed by deep neural networks, particularly the convolutional neural network
(CNN)-based ones.

In the past few years, deep learning methods have become popular for image classification
and labeling problems [16–18], as an end-to-end solution that simultaneously extracts features and
classifies. Unlike image capturing with regular cameras with only red, green and blue channels,
HSIs are generated by the accumulation of many spectrum bands [19–21], with each pixel typically
containing hundreds of narrow bands/channels. Many deep learning-based methods have been
adapted to address the HSI classification problem, such as CNN variants [22–25], autoencoders [26–29]
and deep belief networks (DBN) [30,31]. Despite their promising performance, the scarcity of training
labels remains a great challenge.

Recently, Li et al. [32] proposed the pixel pair features (PPF) to mitigate the problem of training
label shortage. Unlike conventional spectral pixel-based or patch-based methods, the PPF is purely
based on combined pairs of pixels from the entire training set. This pixel-pairing process is used both
in the training and testing (label prediction for the target dataset) stages. During the training process,
two pixels are randomly chosen from the entire labeled training set, and the label of each PPF pair is
deduced by a subtle rule based on the existing labels of both pixels. For pairs with pixels of the same
labeled class, the pair label is trivially assigned as the shared pixel label. The interesting case arises
when two pixels in a pair are of different labeled classes (which is especially likely for multi-class
problems; the likelihood increases as the number of classes increases): the pair is labeled as “extra”,
an auxiliary class artificially introduced. This random combination of pixels significantly increases the
number of labeled training instances (within a total of Nc labeled pixels of class c in the training set,
there could be (Nc

2 ) =
1
2 N2

c − 1
2 Nc randomly sampled PPF pairs for the class c), alleviating the training

sample shortage.
Despite its success, the PPF implementation [32] includes randomly sampled pairs across the

entire training set, which incurs very larger intra-class variances and changes the overall training
set statistical distribution. Due to the intrinsic properties of HSI imaging, pixels with the same
ground truth class labels could appear differently and statistically distribute differently across
channels/wavelengths, especially for pixels geographically far apart from each other. Additionally,
the PPF implementation [32] includes a pair label prediction rule inconsistent with its training pair
labeling rule. At the testing (label prediction) stage, the “extra” class is deliberately removed, forcing
the classifier (a Softmax layer) to pick an essentially wrong label for such PPF pairs.

Inspired by [32], a revamped version of the HSI classification feature is proposed in this paper,
which is termed the “spatial pixel pair feature” (SPPF). The core differences of the proposed SPPF and
the prior PPF are the geographically co-located pixel selection rule and the pair label assignment rule.
For each location of interest, SPPF always selects the central pixel (at the location of interest) and one
from its immediate eight-neighbor, at both the training and testing stage. In addition, an SPPF pixel
pair is always labeled with the central pixel label, regardless of the other neighboring pixel.

Although the smaller neighborhood size yields fewer folds of training sample increase (the proposed
SPPF offers up to eight-folds of training sample increase), the small neighborhood substantially
decreases the intra-class variances. Statistically speaking, geographically co-located SPPF pixels are
much more likely to share similar channel/wavelength measurement distributions than their PPF
counterparts. Furthermore, the simple SPPF pair label assignment rule eliminates the complicated and
possibly erroneous handling of “extra” class labels.



Sensors 2017, 17, 2421 3 of 20

Alongside the shortage of training samples, the deep neural network structural design for the
classifier is another challenge, especially for high dimensional HSI data. In this paper, we further
propose a flexible multi-stream CNN-based classification framework that is compatible with multiple
in-stream sub-networks. This framework is composed of a series of sub-networks/streams, each of
which independently process one SPPF pixel pair. The outputs from these sub-networks are fused
(in the “late fusion” fashion) with one average pooling layer that leverages the class variance and a
few-fully connected (FC) layers for final predictions.

The remainder of this paper is structured as follows. Section 2 provides a brief overview of related
work on HSI classification with deep neural networks. Section 3 presents the new SPPF feature and
the new classification framework. Subsequently, Section 4 provides detailed experimental settings and
results, with some discussions on potential future work. Finally, conclusions are drawn in Section 5.

2. Related Work

HSI classification has long been a popular research topic in the field of remote sensing, and the
primary challenge is the highly-limited training labels. Recent breakthroughs were primarily achieved
by deep learning methods, especially CNN-based ones [22,32].

Hu et al. [22] propose a CNN that directly processes each single HSI pixel (i.e., raw HSI pixel as
the feature) and exploits the spatial information by embedding spectrum bands in lower dimensions.
For notational simplicity, this method name is abbreviated to “Pixel-CNN1” in this paper (no official
abbreviation is provided in [22]), as it is based on individual HSI pixels, and the CNN inputs are all the
channels/wavelengths from one pixel (hence the subscript 1). The Pixel-CNN1 method outperforms
many previous conventional methods without resorting to any prior knowledge or feature engineering.
However, noise remains an open issue and heavily affects the prediction quality. Largely due to the
lack of spatial information, the discontinuity artifacts (especially the ‘salt-and-pepper’ noise patterns)
are widespread.

More recent efforts [33–35] have been made to incorporate spatial consistency in HSI classification.
Qian et al. [36] especially claim that spatial information is often more critical than spectral information
in the HSI classification task. Slavkovikj et al. [37] incorporate both spatial and spectral information by
proposing a CNN that process a HSI pixel patch, which is abbreviated as Patch-CNN9 in this paper
(in [37], a patch typically covers 3× 3 pixels, i.e., the inputs of CNN covers nine pixels, hence the
9 subscript). The Patch-CNN9 method learns structured spatial-spectral information directly from
the HSI data, while CNN extracts a hierarchy of increasingly spatial features [38]. Later, Yu et al. [39]
proposed a similar approach with carefully crafted network structures to process three-dimensional
training data. Meanwhile, Shi et al. [40] further enhanced the spatial consistency by adopting a 3D
recurrent neural network (RNN) following the CNN processing. Recently, Zhang et al. [41] proposed a
dual stream CNN, with one CNN stream extracting the spectral feature (similar to Pixel-CNN1 [22])
and the other extracting the spatial-spectral feature (similar to Patch-CNN9 [37]). Subsequently, both
features are flattened and concatenated, before feeding into a prediction module.

Despite the success of the aforementioned approaches, the shortage of available training samples
remains a vital challenge, especially when neural networks go deeper and wider [42], due to more
parameters in a larger scale network model. To alleviate this problem, many efforts have been
made. The first natural effort is better data augmentation. Slavkovikj et al. [37] introduce additional
artificial noises based on the HSI class-specific spectral distributions. Granted that there is the risk
of migrating the original spectral distribution, a reasonable amount of additive noise could lead to
better generalization performance. Another way of augmenting training samples is proposed in [32],
where randomly sampled pixel pairs (i.e., the PPF feature) from the entire training dataset are used.
The PPF feature exploits the similarity between pixels of the same labeled class and ensures enough
labeled PPF training pairs for its classifier.

Another group of work addresses the limited training labels challenge by exploiting the statistical
characters in HSI channels/wavelengths. Methods like multi-scale feature extraction [23] extract
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multi-scale features using autoencoders followed by classifiers training. However, these methods are
based on a lower dimensional spectral subspace, which may omit valuable information. Alternatively,
some efforts have been made to combine HSI classification with auxiliary tasks such as super-pixel
segmentation [43]. The super-pixel segmentation provides strong local consistency for labels and can
also serve as a post-processing procedure. Romero et al. [44] present a greedy layer-wise unsupervised
pre-training for CNNs, which leads to both performance gains and improved computational efficiency.

Additionally, the vast variations in the statistical distributions of channels/wavelengths also draw
much research attention. Slavkovikj et al. [45] propose an unsupervised sub-feature learning method
in the spectral domain. This dictionary learning-based method greatly enhanced the hyperspectral
feature representations. Zabalza et al. [46] extract features from a segmented spectral space with
autoencoders. The slicing of the original features greatly reduces the complexity of network design and
improves the efficiency of data abstraction. Very recently, Ran et al. [47] propose the band-sensitive
network (BsNet) for feature extraction from correlated band groups, with each band group earning a
respective classification confidence. The BsNet label prediction is based on all available band group
classification confidences.

3. SPPF and Proposed Classification Framework

In this section, the classification problem of HSI data is first formulated mathematically, followed
by the introductions of early HSI features (raw spectral pixel feature and spectral pixel patch feature).
Subsequently, the new SPPF feature is proposed and compared against the prior PPF feature. Finally,
a new multi-stream CNN-based classification framework is introduced.

Let X ∈ RW×H×D be an HSI dataset, with W, H, D being the width (i.e., the total number
of longitude resolution), height (i.e., the total number of latitude resolution) and dimension
(i.e., spectral channels/wavelengths), respectively. Suppose among the total number of W × D pixels,
N of them are labeled ones in the training set T:

T = {xi, yi}N
i=1 , where xi ∈ RD, yi ∈ K, i = 1, · · · , N. (1)

xi is a D-dimensional real-valued spectral pixel measurement; yi is its corresponding integer valued
label; K = {1, · · · , K} is the set of labeled classes, with K being the total number of classes.

The goal of HSI classification is to find a prediction function f : xj 7→ K for unlabeled pixels
xj 6∈ T, given the training set T = {xi, yi}N

i=1.
For methods with incorporated spatial information (e.g., [37]), the prediction function f involves

more inputs than xj itself. Additionally, a set of neighboring pixels N(xi) is also f ’s inputs. Therefore,
the predicted label ŷj is,

ŷj = f
(
xj, N(xj)

)
, xj 6∈ T. (2)

For notational simplicity, define Si as a set containing both the query pixel xi and its neighboring
pixels N(xi),

Si = {xi, N(xi)}, (3)

and let Li represent the label of set Si. With different choices of neighborhoods N(xi), both Si and Li
change accordingly. In the following sections, a bracketed number in the superscript of Si and Li is
used to distinguish such variations.

3.1. Raw Spectral Pixel Feature

As shown in Figure 1a, a spectral pixel is a basic component of HSI. The raw spectral pixel feature
is used in early CNN-based work, such as Pixel-CNN1 [22]. With such a feature, the label prediction
task is:

ŷ(1)j = f (1)
(

S(1)
j

)
, where S(1)

j =
{

xj
}

, ∀xj 6∈ T. (4)
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During f (1)’s training process, labeling of S(1)
i is straightforward,

L(1)
i = yi, ∀xi ∈ T, (5)

where yi is the label associated with xi.
Despite its simplicity, the lack of spatial consistency information often leads to erroneous predicted

labels, especially within class boundaries.

3.2. Spectral Pixel Patch Feature

Proposed in [37], the spectral pixel patch feature uses the entire neighboring patch as basis for
classification, as shown in Figure 1b,

ŷ(2)j = f (2)
(

S(2)
j

)
, where S(2)

j =
{

xj, N8(xj)
}

, ∀xj 6∈ T, (6)

where N8(xj) denotes all eight pixels in xj’s eight-neighbor.

During f (2)’s training process, labeling of S(2)
i is completely based on the label yi of the central

pixel xi,
L(2)

i = yi, ∀xi ∈ T, (7)

In contrast to the raw spectral pixel feature, the spectral pixel patch feature provides
spatial information and promotes local consistency in labeling, leading to smoother class regions.
The introduction of spatial information in N8(xj) significantly improves the prediction accuracy and
contextual consistency.

(a) (b) (c) (d)

Figure 1. Illustrations of popular features used in HSI classification. Early CNN-based HSI classification
methods are either based on raw spectral pixel feature [22] in (a) or spectral pixel patch feature [37]
in (b). As shown in (c), [32] adopts a random sampling scheme across the entire training set to construct
a large number of labeled pixel pair features (PPF) pairs. The proposed spatial pixel pair feature
(SPPF) feature chooses a tight eight-neighbor as N(x0), from which SPPF pairs are built, such as
{x0, x1}, {x0, x2}, etc. (a) Raw spectral pixel feature; (b) spectral pixel patch feature; (c) PPF feature;
(d) proposed SPPF feature.

3.3. PPF

The PPF feature [32] is illustrated in Figure 1c. Pairs of labeled pixels are randomly chosen across
the entire training set T, and the label prediction is carried out by:

ŷ(3)j = f (3)
(

S(3)
j

)
, where S(3)

j =
{

xj, xq
}

; xj, xq 6∈ T, ŷ(3)j ∈ K. (8)

During f (3)’s training process, labeling of S(3)
i is based on the following rule,
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L(3)
i =

{
yi if yi = yp

Ψ if yi 6= yp
, where xi, xp ∈ T, (9)

where yi and yp are the associated labels of xi and xp from pixel pair {xi, xp}, respectively. Ψ is a newly
introduced class label, denoting an “auxiliary” class not in the original K. In this paper, we set it as
Ψ = K + 1.

Comparing Equation (8) and Equation (9), it is evident that the spans of L(3)
i and ŷ(3)j are different.

The element Ψ in Equation (9) is outside the range of f (3). Therefore, there is a mismatch between the
training labels and prediction labels, which could leads to suboptimal classification performance.

Additionally, there are no spatial constraints imposed on the choice of xi and xp while generating

training samples
{

S(3)
i , L(3)

i

}
xi ,xp∈T

according to Equation (9). Therefore, xi and xp could be far apart

from each other geographically. As Qian et al. argued in [36], spatial information could be more critical
than its spectral counterpart, so such a pair generation scheme in Equation (8) could lead to high
intra-class variances in training data S(3)

i and possibly confuses classifier f (3).
Practically, during the label prediction process in Equation (8), multiple xq’s are normally chosen

from the reference pixel xj’s neighborhood N(xj),

M(j) = Card
(

xp|xp ∈ N(xj), xp 6∈ T
)

, where xj 6∈ T, (10)

where M(j) denotes the total number of testing pixel pairs assembled for xj. “Card” in Equation (10)

represents the cardinality of a set. A series of S(3)
j ’s are constructed as:

S(3)
j (q1) =

{
xj, xq1

}
, S(3)

j (q2) =
{

xj, xq2

}
, · · · , S(3)

j (qM(j)) =
{

xj, xqM(j)

}
, (11)

and their respective predictions are:

ŷ(3)j (1) = f (3)
(

S(3)
j (q1)

)
, · · · , ŷ(3)j (M(j)) = f (3)

(
S(3)

j (qM(j))
)

. (12)

The final predicted label is determined by a majority voting,

ŷ(3)j = mode
(

ŷ(3)j (1), · · · , ŷ(3)j (M(j))
)

, (13)

where “mode” in Equation (13) denotes statistical mode (i.e., the value that appears most often).

3.4. Proposed SPPF

To address the lack of spatial constraints while selecting {xi, xp} and eliminating the extra Ψ label
in Equation (9), the new SPPF feature is proposed and illustrated in Figure 1d. The label prediction is
carried out by ŷ(4)j ∈ K,

ŷ(4)j = f (4)
({

S(4)
j (m)

}8

m=1

)
, where S(4)

j (m) =
{

xj, xqm

}
, xj 6∈ T,

{
xqm

}8
m=1 = N8(xj). (14)

The SPPF prediction function f (4) always processes exactly eight sets of SPPF pairs
{

S(4)
j (m)

}8

m=1
,

and these pairs holistically contribute to the prediction ŷ(4)j without resorting to majority voting.

During f (4)’s training process, only pixels from the reference pixel xi’s eight neighbors are used

for constructing S(4)
i (m). In addition, labeling of

{
S(4)

i (m)
}8

m=1
is purely based on the central reference

pixel xi’s label yi, eliminating any auxiliary class labels.

L(4)
i = yi, ∀xi ∈ T, (15)
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The SPPF training set with pixel pairs and labels is:{{
S(4)

i (m)
}8

m=1
, L(4)

i

}N

i=1
, (16)

where L(4)
i = yi, S(4)

i (m) =
{

xi, xpm

}
,
{

xpm

}8
m=1 = N8(xi), ∀xi ∈ T.

3.5. Proposed Classification Framework with SPPF

On top of the proposed SPPF feature, a multi-stream CNN architecture is proposed
for classification, as shown in Figure 2. Overall, there are three major component layers:
firstly, the multi-stream feature embedding layers; secondly, an aggregation layer; and finally,
a classification layer.

Figure 2. Proposed classification framework for HSI classification based on SPPF features.

The multi-stream feature embedding layers are designed to extract discriminative features from
SPPFs. These layers are grouped into eight streams/sub-networks, each of which processes a single
S(4)

i (m), where m = 1, · · · , 8. A major advantage of this design is the flexibility of incorporating various
nets as streams/sub-networks. We have adopted both classical CNN implementations, as well as
alternatives such as [47]. All sub-networks have their input layers slightly adjusted to fit the pixel
pair inputs; and last scoring layers (i.e., SoftMax layers) are removed. After passing the multi-stream
feature embedding layers, HSI data are transformed into eight streams of K-dimensional feature
vectors, ready to be fed to the next aggregation layer.

Empirically, the overall classification performance is insensitive to different choices of
sub-networks, given a reasonable sub-network scale. In fact, due to the limited amount of training
data, slightly shallower/simpler networks enjoy a marginal performance advantage.

The aggregation layer is one average pooling layer, which additively combines information
from all streams together, leading to its robustness against noises and invariance from local rotations.
The output of the prior multi-stream embedded layer is of dimension FK×1(m); m = 1, · · · , 8 are first
concatenated to form F(c):

FK×8(c) =
[

FK×1(1)T , · · · , FK×1(8)T
]T

. (17)

Subsequently, an average pooling layer process F(c) outputs a vector FK×1(a). Even if there are
noise contaminations in some streams/sub-networks, FK×1(a) is less susceptible to them, thanks to the
averaging effect. Lastly, two fully-connected (FC) layers and a SoftMax layer serve as the classification
layers, providing confidence scores and prediction labels.
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4. Experimental Results and Discussion

In this section, we give the detailed configuration description of the datasets we use and the
models we build for analyzing the new SPPF and the proposed classification framework. For HSI
classification measurement, we choose the overall accuracy (OA) and average class accuracy (AA) as
the evaluation strategy (the overall accuracy is defined as the ratio of correctly labeled samples to all
test samples, and the average accuracy is calculated by simply averaging the accuracies for each class.).

4.1. Dataset Description

We test the proposed framework and competing state-of-the-art methods on three publicly
available HSI datasets. All datasets are open accessible online (http://www.ehu.eus/ccwintco/index.
php?title=Hyperspectral_Remote_Sensing_Scenes).

India Pines dataset: The NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Indian
Pines image was captured over the agricultural Indian Pine test site located in the northwest of
Indiana. The spectral image has a spatial resolution of 145× 145 and a range of 220 spectral bands
from 0.38–2.5 µm. Prior to commencing the experiments, the water absorption bands were removed.
Hence, we are dealing with a 200-band length spectrum. What is more, the labeled classes are highly
unbalanced. We choose nine out of 16 classes, which consists of more than 400 samples. In total,
9234 samples are left for further analysis.

University of Pavia dataset: The University of Pavia image (PaviaU) was acquired by the ROSIS-03
sensor over the University of Pavia, Italy. The image measures 610× 340 with a spatial resolution of
1.3 m per pixel. There are 115 channels whose coverage ranges from 0.43–0.86 µm, and 12 absorption
bands were discarded for noise concern. There are nine different classes in the PaviaU reference map
and 42,776 labeled samples used in this paper.

Salinas scene dataset: This scene is also collected by the 224-band AVIRIS sensor over Salinas
Valley, California, and is characterized by high spatial resolution (512× 217 3.7-m pixels). As with
Indian Pines scene, we discarded the 20 water absorption bands, in this case bands with the
numbers: [108–112], [154–167], 224. This image was available only as at-sensor radiance data.
It includes vegetables, bare soils and vineyard fields. The Salinas ground-truth contains 16 classes and
54,129 samples.

4.2. Model Setup and Training

For efficiency demonstration of the proposed method, we first have some classical shallow
classification methods built in the comparison experiment, for example SVM [10] and ELM [48]. We use
the LIBSVM [49] and ELM (http://www.ntu.edu.sg/home/egbhuang/elm_codes.html) development
toolkit for building those two models separately. For the SVM model, we use the polynomial kernel
function, with γ equal to one and the rest of the hyper-parameters set as the default. For the ELM
model, we set the number of hidden neurons as 7000 and choose the Sine function as the activation
function. Predictions are given by each model regarding raw input spectrum pixels.

As for CNN-based deep models, we have reproduced three works, CNN from [37], BsNet [47]
and PPF [32]. To distinguish, we have adjusted the model’s name in different case. For example,
we have CNN1 and CNN9 to present the model in [37] working on the spectrum pixel (one pixel) and
spatial patch (nine pixels), respectively. CNN2 is for the model in [37] when it is embedded into the
proposed framework working on a pixel pair (two pixels). We further simplified the CNN2 subnetwork,
which we quote as CNN2-lite in this paper, with the number of neurons in the fully-connected layers
set to 400 and 200, respectively. In this way, the total parameters have greatly dropped from 4,650,697
down to 2,100,297 for one single subnetwork. Meanwhile, the chance of overfitting is greatly decreased.
In Table 1, we have listed out the different configurations for better clarification.

For the PPF framework [32], we have adjusted the voting size during the testing stage to be three
(the default value is five), which matches the size with other spatial spectral methods (CNN9) in our paper.

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ntu.edu.sg/home/egbhuang/elm_codes.html
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When building the proposed framework in Figure 2, we choose CNN2, CNN2-lite and BsNet as the
subnetworks, which we refer to as SPPF framework (CNN2), SPPF framework (CNN2-lite), and SPPF
framework (BsNet) respectively. The subnetworks are initialized with default configurations and
further fine-tuned for advantageous performance during the training stage of the whole framework.
The rest of the parameters are set to be the default.

Table 1. Configuration list of selected models working on the India Pines dataset for the illustration of input and
output modifications. FC, fully-connected.

CNN1 CNN9 CNN2 CNN2-Lite

Input 1 × 200 × 1 9 × 200 × 1 2 × 200 × 1 2 × 200 × 1
Conv1 (1 × 16) #32 (9 × 16) #32 (2 × 16) #32 (2 × 16) #32
Conv2 (1 × 16) #32 (1 × 16) #32 (1 × 16) #32 (2 × 16) #32
Conv3 (1 × 16) #32 (1 × 16) #32 (1 × 16) #32 (2 × 16) #32

FC1 4960–800 4960–800 4960–800 4960–400
FC2 800–800 800–800 800–800 400–200
FC3 800-K 800-K 800-K 200-K

Output SoftMax SoftMax - -

The proposed and comparative CNN models are all developed using the Torch7 deep learning
package [50], which makes many efforts to improve the performance and efficacy of benchmark
deep learning methods. The training procedures for all models are run on an Intel Core-i7 3.4-GHz
PC with an Nvidia Titan X GPU. For the proposed framework, we use the tricks in efficient
backprop [51] for initialization and the adaptive subgradient online learning (Adagrad) strategy [52]
for optimization, which allows us to derive strong regret guarantees. Further details and analysis of the
performance of the network configurations are given in the following subsection of the experimental
classification results.

4.3. Configuration Tests

For establishing a stable architecture, we have tested several configurations and verifications on
different datasets. The major configurations are kept in the same, except parameters to be verified.

Effect of training samples: Figure 3 illustrates the classification performance with various numbers
of training samples on different datasets. Generally, when the training size increases, the performance
of all methods has a noticeable improvement. In the following experiments, we choose 200 samples
from each class, which gives a relatively larger number of training samples against the overfitting
problem. The remaining instances of each class are grouped into the testing set. The detailed dataset
class description and configuration are presented in Table 2. All those samples are normalized to a
new range with zero mean and unit variance before they are fed into different models.

(a) Indian Pines (b) University of Pavia (c) Salinas Scene

Figure 3. Stability comparison results on three datasets with increasing number of training samples.
Generally, more training samples result in models having better performance.
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Table 2. Detailed configuration of the three datasets (Pines, University of Pavia (PaviaU) and Salinas)
used in this paper. For each class, 200 samples are randomly selected as the training set and the rest as
the testing set. For Pines, we use only the top 9 classes with the largest number of samples.

No. Pines PaviaU Salinas
Class Name Train Test Class Name Train Test Class Name Train Test

1 Corn-notill 200 1228 Asphalt 200 6431 Brocoli_1 200 1809
2 Corn-mintill 200 630 Meadows 200 18,449 Brocoli_2 200 3526
3 Grass-pasture 200 283 Gravel 200 1899 Fallow 200 1776
4 Grass-trees 200 530 Trees 200 2864 Fallow_plow 200 1194
5 Hay-win. 200 278 Sheets 200 1145 Fallow_smooth 200 2478
6 Soy.-notill 200 772 Bare Soil 200 4829 Stubble 200 3759
7 Soy.-mintill 200 2255 Bitumen 200 1130 Celery 200 3379
8 Soy.-clean 200 393 Bricks 200 3482 Grapes 200 11,071
9 Woods 200 1065 Shadows 200 747 Soil_vinyard 200 6003
10 Corn_weeds 200 3078
11 Lettuce_4wk 200 868
12 Lettuce_5wk 200 1727
13 Lettuce_6wk 200 716
14 Lettuce_7wk 200 870
15 Vinyard_un. 200 7068
16 Vinyard_ve. 200 1607

Sum 1800 7434 1800 40,976 3200 50,929

Effect of batch size: The size of sample batches during the training stage can also have some
impact on the model performance, especially for optimization methods like stochastic gradient decent.
We have tested various batch size values ranging from 1–50 on three datasets. The results are shown in
Figure 4. We can figure out that a larger batch size does not necessarily always help the model obtain
better performance. Although the mini-batch training trick has the strength of faster convergence
maintenance, a larger batch size with limited samples disturbs the convergence stability occasionally.
In the following experiments, we choose a batch of 10 samples for training, which gets the top
classification precision in our framework.

Figure 4. Batch size influence on training the SPPF framework (CNN2-lite) with different datasets.

Effect of the average pooling layer: The average pooling layer is designed to introduce the
framework with noise and variance stability, which also shares a similar property as the voting stage
in the PPF framework. As can be seen from Table 3, the precision improved with about 0.8% for the
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Pines and Salinas datasets. For the PaviaU dataset, the influence is not that obvious. As the spectrum
in PaviaU is much shorter (103 bands in fact), noises may not be that essential as the remaining two
dataset with over 200 bands. With no harm to the final precision, we would keep the averaging layer
in the following experiments for all datasets.

Table 3. Classification performance of the SPPF framework using CNN2-lite as the subnetwork
with/without the average pooling layer (OA shown in percentage).

Pines PaviaU Salinas

with avg layer 96.02 92.73 95.16
without avg layer 95.33 92.70 94.84

Effect of FC layers: There is no doubt that the capacity of fully-connected layers can directly
influence the final classification accuracy. While a larger size of FC layers increases the classifier
capacity, models with smaller ones are easier to train and suit problems with limited training samples
better. During the framework design, we have tried to use two and three fully-connected layers
alternatively. As shown in Table 4, the model with CNN2-lite as subnetworks working on different
datasets shows various performance results. Take the Pines dataset as an example: when we change
from two FC layers to three FC layers, the precision obtains about a 2% decrease. Meanwhile, we have
a slight drop on the PaviaU dataset and about 0.5% improvement on the Salinas dataset. One reason
might be that the higher capacity of a fully-connected classification module is needed when we have
a superior number of classes in the dataset. In the remaining experiments, to make one unified
framework, we choose two FC layers as the prediction module.

Table 4. Classification performance of the SPPF framework using CNN2-lite as subnetworks with
different numbers of FC layers (OA shown in percentage).

Pines PaviaU Salinas

2 FC layers 93.89 91.02 94.54
3 FC layers 91.79 90.73 95.13

4.4. Classification Results

In this subsection, we give the detailed results from the proposed model, as well as comparative
ones on three datasets. Tables 8–10 list out the details of OA and AA for the Pines, PaviaU and Salinas
datasets, respectively.

One obvious observation would be that CNN-based deep models (Columns 4–10) show boosting
performance over shallow models like SVM (Column 2) and ELM (Column 3). That reflects the
booming development of deep learning methods in recent years with competing accuracy.

Spatial consistency reserves a strong constraint for HSI classification. For spatial spectral-based
CNN models (Column 5), there is about a 4% improvement compared to spectral alone (Column 4).
The introduction of neighbor pixels not only gives models more information during prediction, but also
maintains contextual consistency.

For SPPF-based models, it is verified that the performance of conventional deep learning solutions
for HSI classification can be further boosted by the proposed SPPF-based framework. When comparing
Column 5 with Column 7 and Column 6 with Column 10, we can observe that both CNN [37] and BsNet
get better performance when embedded in the proposed framework. This confirms that the proposed
framework works efficiently without any increasing of training samples. Besides, the SPPF framework
with CNN2-lite (Column 9) shows even better results than CNN2 (Column 8), which contains much
more parameters than the previous one. Hence, the framework also shows an advantage in controlling
the model size on the same task. Moreover, we do not need that many parameters to maintain a good



Sensors 2017, 17, 2421 12 of 20

performance if the problem has limited samples. To be concise, by simply changing from conventional
CNN models to the SPPF framework, we can greatly shrink the model size and meanwhile relieve the
over-fitting chance.

Figure 5–7 shows the thematic maps accompanying the results from Tables 8–10 separately.
In Figure 5a, we give one pseudo color image of the Indian Pines dataset for a better illustration of
the natural scene and also for the declaration of why spatial consistency holds. Figure 5b–g shows
the classification results from SVM, ELM, Pixel-CNN1, Patch-CNN9, BsNet and the PPF framework,
Figure 5h shows the result from the SPPF framework (CNN2-lite), which is the best one of the SPPF
models. Lastly, Figure 5i gives the ground truth map. Similar results are also shown in Figures 6 and 7
for the remaining two datasets. It is straightforward to tell that the results from SPPF show superior
performance to the previous methods, where less noisy labels are given and the spatial consistency
is improved.

The statistical differences of SPPF over competitive models with the standardized McNemar test
are given in Table 5. According to the definition in [53], the value Z from McNemar’s test reflects that
one method is significantly statistically different from another when its absolute value is larger than
2.58. The larger value of Z shows better accuracy improvement. In the table, all the values show that
the proposed SPPF outperforms previous CNN-based solutions.

Table 5. Statistical difference of SPPF over competitive models with the standardized McNemar test.
BsNet, band-sensitive network.

SPPF vs. CNN1 SPPF vs. CNN9 SPPF vs. BsNet SPPF vs. PPF

Z 21.01 9.04 20.02 20.00

Table 6. Time consumption in training and testing deep models on the Pines dataset.

CNN1 CNN9 BsNet PPF SPPF
CNN2 CNN2-Lite BsNet

Training (h) 0.80 0.50 0.70 46.1 1.48 1.42 10.15
Testing (ms) 0.72 0.81 32.0 16.4 5.64 5.00 37.50

Table 6 gives the total time consumption of training models and the average time cost of testing
one sample. All the experiments are fulfilled with the Torch7 package using the same PC described
in Section 4.2. It is worth mentioning that as we have set the early-stopping criterion when training
error stops dropping or validation accuracy starts decreasing, the training time does not necessarily
reflect each model’s complexity. The testing time, on the other hand, is more suitable as a reflection
of the model complexity. It is reasonable for the PPF model to take a much longer training time, as it
is dealing with many more samples. Besides, the relatively high testing consumption of PPF relies
on the fact that the model should be run eight times before the voting stage. Meanwhile, the voting
stage, which is not a part of the model, also requires extra time. When conventional CNN models
are embedded into the SPPF framework, their time consumptions increase accordingly. However,
the testing time difference of BsNet when embedded is not that obvious. That is because most of the
time consumption comes from the grouping stage, which shows no difference in those cases. Besides,
the input channels are decreased, which also helps with time saving.

4.5. Discussion

Based on the comparison tests in Section 4.3 and the classification results in Section 4.4, a brief
performance analysis is included in this section.

The primary comparative advantage of the proposed SPPF framework is the incorporation of
contextual information, which has significantly boosted the spatial consistency. Unlike conventional
CNN-based HSI classification methods (e.g., CNN1, CNN9), the discontinuity artifact (such mislabeled



Sensors 2017, 17, 2421 13 of 20

pixels distribute randomly and sparsely and form a salt-and-pepper noise pattern in Figures 5–7)
has greatly attenuated. In addition, the proposed spatial information preserving pixel pair selection
scheme in Section 3.4 are also evidently proven to be superior to the original PPF in Tables 8–10.

The advantages of the subnetwork-based multi-stream framework are also verified. Firstly, this
particular design offers a scalable network structure template without requiring the formidable manual
selection process to determine a suitable sub-network configuration. According to the last three
columns in Tables 8–10, this multi-stream framework is robust to different selections of subnetworks:
both CNN2 and BsNet provide decent performances, only marginally inferior to the optimal CNN2-lite.
Incidentally, from the comparison between CNN2 and CNN2-lite in the SPPF framework, it appears
that more parameters (in CNN2) do not necessarily guarantee improved classification accuracy.

For future work, the incorporation of pixel-group features with three or more pixel-combinations
shows great potential. Being a natural extension to the pixel pair feature, the triplet pixel feature is
introduced and briefly tested bellow, with initial performance already better than the original pixel
pair feature. Further analysis of the choices of adjacent pixels and label assignment strategy is going to
be included in our future work.

Effect of spatial triplet pixel features: Since we have designed the framework to adopt multiple
pixel-pairs as input rather than the normal patch, it is interesting to explore if more pixels as features
can work better. In this subsection, we use triplet pixels as an input feature for subnetworks.
Comparing with pixel-pairs, triplet pixels show the subnetworks more information and also greater
potential of better classification capacity. For achieving this experiment, the first convolutional layer in
subnetwork is changed to three input channels, slightly different from the two input channels for SPPF
framework, which we present as CNN3-lite. The remainder of the whole framework is kept the same.
For sample formatting, we have instance S(5)

i (t) = {xi, xp, xl}, with xi being the query central pixel,

xp, xl ∈ N8(xi). The label prediction for one triplet pixel is carried out by ŷ(5)j ∈ K,

ŷ(5)j = f (5)
({

S(5)
j (t)

}T

t=1

)
, where S(5)

j (t) =
{

xj, xqt , xrt

}
, xj 6∈ T, xqt , xrt ∈ N8(xj), t = 1, . . . , T, (18)

where T = (8
3). The training label for this spatial triplet pixel features is defined as:

L(5)
i = yi, ∀xi ∈ T. (19)

Since the combination of triplets are various for a α-neighbor, in practice, we randomly choose
eight triplets to fit into the framework presented previously. The final prediction results are shown
in Table 7. The precision shows noticeable increase on all datasets. This observation embraces our
proposal that using spatial consistency can greatly improve the models’ capacity.

Table 7. Classification performance of the extended framework using CNN2-lite as subnetworks with
triplet pixel features (OA shown in percentage).

Pines PaviaU Salinas

Pair pixel features 95.47 94.51 94.69
Triplet pixel features 95.91 94.79 95.98
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(a) Pseudo color image (b) SVM (c) ELM

(d) Pixel-CNN1 (e) Patch-CNN9 (f) Patch-BsNet

(g) PPF-framework (h) SPPF-framework (CNN2-lite) (i) Ground Truth

Figure 5. Results on the University of Pines dataset. (a) Pseudo color image of the scene. (b–h) Results
from competing methods. (i) The ground truth. Our algorithm achieves the best classification accuracy
among the competing methods. (Best viewed in color.)
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(a) Pseudo color image (b) SVM (c) ELM

(d) Pixel-CNN1 (e) Patch-CNN9 (f) Patch-BsNet

(g) PPF-framework (h) SPPF-framework (CNN2-lite) (i) Ground Truth

Figure 6. Results on the University of Pavia dataset. (a) Pseudo color image of the scene. (b–h) Results
from competing methods. (i) The ground truth. Our algorithm achieves the best classification accuracy
among the competing methods. (Best viewed in color.)
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(a) Pseudo color image (b) SVM (c) ELM

(d) Pixel-CNN1 (e) Patch-CNN9 (f) Patch-BsNet

(g) PPF-framework (h) SPPF-framework (CNN2-lite) (i) Ground Truth

Figure 7. Results on the University of Salinas dataset. (a) Pseudo color image of the scene. (b–h)
Results from competing methods. (i) The ground truth. Our algorithm achieves the best classification
accuracy among the competing methods. (Best viewed in color.)
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Table 8. Classification results on the Indian Pines dataset (accuracy shown in percentage).

SVM ELM Pixel-
CNN1

Patch-
CNN9

Patch-
BsNet

PPF-
Framework

SPPF Framework
CNN2 CNN2-Lite BsNet

1 78.26 79.40 81.42 84.69 85.83 93.65 92.59 94.22 93.65
2 81.27 85.08 89.81 95.08 87.78 85.08 96.03 97.94 92.54
3 98.59 96.47 95.73 99.29 97.88 96.47 100.0 100.0 100.0
4 98.68 99.06 97.71 99.25 99.06 100.0 99.62 99.43 99.06
5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.92
6 76.94 86.66 88.76 92.88 86.01 89.90 95.34 95.85 95.47
7 65.10 69.84 75.42 81.42 79.82 74.06 90.82 92.20 88.51
8 84.99 89.31 94.12 97.46 94.66 97.20 98.73 98.47 97.46
9 98.78 98.40 97.55 98.78 99.06 99.34 99.81 99.81 99.91

AA(%) 86.96 89.36 91.17 94.32 92.23 92.85 96.99 97.55 96.17
OA(%) 80.72 83.80 86.45 90.29 88.49 88.39 95.05 95.92 94.96

Table 9. Classification results on the Pavia University dataset (accuracy shown in percentage).

SVM ELM Pixel-
CNN1

Patch-
CNN9

Patch-
BsNet

PPF-
Framework

SPPF Framework
CNN2 CNN2-Lite BsNet

1 82.69 82.71 86.85 94.44 89.50 87.62 92.38 93.89 93.81
2 87.65 91.23 84.19 86.41 90.19 90.16 90.90 91.71 92.19
3 79.36 79.20 80.75 94.95 88.47 97.53 84.89 83.46 83.10
4 94.24 93.02 93.57 94.34 96.61 99.25 97.14 97.07 97.42
5 99.83 99.30 100.0 99.91 99.83 99.64 99.83 100.0 100.0
6 89.36 91.51 84.54 88.48 94.22 85.62 96.15 95.92 87.49
7 89.38 92.92 92.47 97.26 92.92 73.61 97.35 97.35 97.96
8 81.68 86.79 85.06 90.95 82.25 95.93 86.24 87.71 86.07
9 99.87 99.87 99.73 100.0 99.87 97.93 99.20 99.73 100.0

AA(%) 89.34 90.73 89.68 94.08 92.65 91.92 93.78 94.09 93.12
OA(%) 87.25 89.55 86.17 90.17 90.77 86.95 92.09 92.73 91.94

Table 10. Classification results on the Salinas dataset (accuracy shown in percentage).

SVM ELM Pixel-
CNN1

Patch-
CNN9

Patch-
BsNet

PPF-
Framework

SPPF Framework
CNN2 CNN2-Lite BsNet

1 99.00 99.72 99.39 99.72 99.78 99.56 100.0 99.83 99.67
2 99.66 99.55 98.04 99.26 99.86 99.63 99.91 99.72 99.94
3 99.94 100.0 99.55 99.49 99.61 99.72 99.94 100.0 99.55
4 98.74 99.08 99.08 99.41 99.66 99.50 99.66 99.75 99.50
5 98.99 99.27 98.34 97.54 98.75 99.35 99.39 99.64 99.48
6 99.76 99.79 99.55 99.87 99.39 99.57 100.0 100.0 100.0
7 99.50 99.53 99.41 99.67 99.59 99.53 99.94 100.0 99.79
8 70.07 80.87 79.60 82.20 76.73 87.22 87.00 87.55 89.03
9 99.30 99.63 97.70 98.87 99.07 98.52 99.62 99.40 99.47

10 97.66 95.81 91.29 94.54 92.85 96.82 97.95 98.05 98.57
11 99.77 99.42 98.39 98.16 97.24 99.54 99.88 99.88 99.31
12 99.94 100.0 99.36 100.0 99.94 99.88 99.88 100.0 99.88
13 99.58 98.74 98.60 99.86 97.49 99.86 99.44 99.44 99.02
14 98.85 98.28 93.91 97.47 97.82 97.01 99.77 99.66 99.31
15 70.05 76.06 68.81 79.84 75.17 74.65 85.22 86.62 74.31
16 99.63 99.07 98.51 98.13 98.88 99.69 99.56 99.25 99.19

AA(%) 95.65 96.55 94.97 96.50 95.74 96.88 97.95 98.05 97.25
OA(%) 88.88 91.99 89.87 92.49 90.62 93.10 94.87 95.16 93.99
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5. Conclusions

In this paper, a new spatial pixel pair-based, multi-stream convolutional neural network is
proposed for HSI classification applications. Unlike conventional neural networks that regard the
spatial information purely as an extensional channel, the proposed framework captures additional
spatial information via a series of subnetworks (streams) with flexible subnetwork configurations and
achieves superior classification accuracy on three publicly available datasets. Further discussion on
grouping pixels for better improvement is open for future work. Source codes are available on the
project page: https://hijeffery.github.io/HSI-SPPF/.
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