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Abstract: Vision-based mobile robot navigation is a vibrant area of research with numerous
algorithms having been developed, the vast majority of which either belong to the scene-oriented
simultaneous localization and mapping (SLAM) or fall into the category of robot-oriented
lane-detection/trajectory tracking. These methods suffer from high computational cost and require
stringent labelling and calibration efforts. To address these challenges, this paper proposes a
lightweight robot navigation framework based purely on uncalibrated spherical images. To simplify
the orientation estimation, path prediction and improve computational efficiency, the navigation
problem is decomposed into a series of classification tasks. To mitigate the adverse effects of
insufficient negative samples in the “navigation via classification” task, we introduce the spherical
camera for scene capturing, which enables 360◦ fisheye panorama as training samples and generation
of sufficient positive and negative heading directions. The classification is implemented as an
end-to-end Convolutional Neural Network (CNN), trained on our proposed Spherical-Navi image
dataset, whose category labels can be efficiently collected. This CNN is capable of predicting
potential path directions with high confidence levels based on a single, uncalibrated spherical image.
Experimental results demonstrate that the proposed framework outperforms competing ones in
realistic applications.

Keywords: convolutional neural networks; vision-based robot navigation; spherical camera;
navigation via learning

1. Introduction

Vision-based methods have been attracting a huge amount of research interest for decades in
autonomous navigation on various platforms, such as quadrotors, self-driving cars, and ground
robotics. Various camera sensors and algorithms have been incorporated in these platforms to improve
the machine’s sensing ability in challenging indoor and outdoor environments. For most applications,
it is imperative to precisely localize the navigation path and detect potential obstacles. Among them,
accurate position and orientation estimation is arguably the core task for mobile robot navigation.

One major category of navigation methods, the simultaneous localization and mapping (SLAM),
build virtual 3D maps of the surroundings while tracking the location and orientation of the platform.
During last two decades, SLAM and its derivative methods have been dominating the navigation
research field. Various systems have been proposed, such as MonoSLAM [1], PTAM [2], FAB-MAP [3],
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DTAM [4], KinectFusion [5], etc. Besides the use of monocular cameras, Caruso et al. [6] recently
developed a SLAM system directly based on omnidirectional cameras and greatly expanded their
applications. All the aforementioned SLAM systems share a common impediment to mobile platforms
with limited computational capabilities, such as tablet PCs, quadrotors, and moving robotics as in our
case (Figure 1).

Another category of human vision inspired approaches, i.e., the robot-oriented heading-field road
detection and trajectory planning methods, address the navigation problem directly with visual paths
detection via local road segmentation [7] and trajectory prediction [8], etc. For example, Lu et al. [9] built a
robust road detection system based on hierarchical vision sensor. Chang et al. [10] presented a system
using two biologically-inspired scene understanding models. In spite of their simplicity, the navigation
performances of human vision inspired methods are heavily dependent on the quality of low level
local features for their segmentation steps. In addition, for panorama images with heavy fisheye
effect, traditional human vision inspired methods require prior calibration and warping preprocessing,
further complicating these solutions.

In this paper, we focus on mobile robot navigation in open fields, with potential applications
such as wheeled ground robots and low-flying quadrotors. This is a challenging problem: for one
thing, such platforms lack computational capabilities required by SLAM-type algorithms and their
typical tasks do not require sophisticated virtual 3D reconstruction. For another, those robots could be
deployed outdoors with unpaved trails, where traditional path planning algorithms are likely to fail
due to the increased difficulty in detecting unpaved surfaces.

As early as the 1990s, Pomerleau [11] formulated the road following task as a classification
problem. Decades later, Hadsell et al. [12] developed a similar system for ground robot navigation
in unknown environments. Recently, Giusti et al. [13] framed the camera orientation estimation as
a three-class classification (Left, Front and Right) and captured a set of forest trail images with
3 head-mounted cameras, each pointing in one direction. Given one frame input, their model
can decide the next optimal move (left/right turn or keep forward). One major drawback of this
system is the coarse steering decisions, three fixed cameras and three choices are not precise enough
for applications with higher orientation accuracy requirements.

We propose to replace multiple monocular cameras in [13] with a single spherical camera [14].
Thanks to the imaging characteristic of spherical cameras, each image captures the 360◦ panorama of
the scene, eliminating the limitation on available steering choices.

One of the major challenges with spherical images is the heavy barrel distortion due to the
ultra wide-angle fisheye lens, which complicates the implementation of conventional human vision
inspired methods such as lane detection and trajectory tracking. Additional preprocessing steps such
as prior calibration and dewarping are often required. However, in this paper, we circumvent these
preprocessing steps by formulating navigation as a classification problem on finding the optimal
potential path orientation directly based on the raw, uncalibrated spherical images.

Another challenge in the “navigation via classification” task is the shortage of negative training
examples. Negative training samples typically represent wrong heading commands, which could
lead to disasters such as collision. Inspired by [11], we reformulate navigation as classifying spherical
images into a series of rotation categories. Unlike [11], negative training samples (wrong heading
direction) could be conveniently generated by simple rotations of positive training samples (optimal
heading direction), thanks to the 360◦ fisheye panorama.

The contributions of this paper are as follows:

• A native “navigation via classification” framework based purely on 360◦ fisheye panoramas is
proposed in this paper, without the need of any additional calibration or unwarping preprocessing
steps. Uncalibrated spherical images could be directly fed into the proposed framework for
training and navigation, eliminating strenuous efforts such as pixel-level labeling of training
images, or high resolution 3D point cloud generation for training.
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• An end-to-end convolutional neural network (CNN) based framework is proposed, achieving
extraordinary classification accuracy on our realistic dataset. The proposed CNN framework
is significantly more computational efficient (in the testing phase) than SLAM-type algorithms
and readily deployable on more mobile platforms, especially battery powered ones with limited
computational capabilities.

• A novel 360◦ fisheye panoramas dataset, i.e., the Spherical-Navi image dataset is collected, with
a unique labeling strategy enabling automatic generation of an arbitrary number of negative
samples (wrong heading direction).

Figure 1. (A) A spherical camera mounted on a ground robot platform. (B) The spherical camera
coordinate systems and its imaging model. Natural scenes are warped into the circular fisheye image.
(C) Samples of captured spherical images. Red arrows denote the detected optimal path. Our objective
is to generate navigation signals (denoted by blue arrows, i.e., steering direction and angles) based
directly on these 360◦ fisheye panoramas.

The rest of this paper is organized as follows: Section 2 reviews related literature on deep learning
based navigation and spherical images based navigation. Section 3 presents our proposed “navigation
via classification” framework based directly on 360◦ fisheye panoramas. A novel fisheye panoramas
dataset (Spherical-Navi image dataset), is introduced in Section 4 together with the evaluation of the
proposed “navigation via classification” framework in Section 5. Finally, Section 6 concludes this paper.

2. Background and Related Work

Numerous research efforts have been devoted to robot navigation since decades ago, and
SLAM-type algorithms had been the preferable method until the recent trends in applying deep
learning techniques in all low-level/mid-level computer vision tasks. Various classification methods
(even with advanced and multisensory data, [15–17]) and radar based localization methods [18–20]
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had not been competitive enough against SLAM-type algorithms, due to increased sensor complexity
and mediocre recognition accuracy. The “navigation via classification” framework is made both
feasible and attractive to researchers only after deep learning based methods dramatically improved
the classification accuracy.

The current advent of General-Purpose computing on Graphics Processing Units (GPGPU) reduces
the typical CNN training time to feasible levels (the total training time of the proposed network is
approximately 20 h). The low computational cost of deployed CNN makes real-time processing easily
attainable (the proposed network prototype achieves 100 fps without any sophisticated optimization).

2.1. Deep Learning in Navigation

Deep learning has shown its overwhelmingly advantages over conventional methods in many
research areas, including object detection [21,22] and tracking [23,24], image segmentation [25,26],
and hyper-spectral image classification [27,28] etc. With the success of AlexNet [29] on ImageNet
classification challenge [30], convolutional neural networks (CNNs) have become off-the-shelf solution
for classification problems.

A number of improvements have been proposed over the years to further improve the
classification performance of CNNs, such as the pioneering work [31], which shows the regularization
efficiency of “Dropout”, especially for exploring extremely large amount of parameters. Another example
is Lin et al. [32], which enhances model discriminability for local patches within the receptive field by
incorporating micro neural networks within complex structures.

Navigation based on classifying the surrounding scene images with neural networks has been
explored as early as 1990s. The Autonomous Land Vehicle In a Neural Network (ALVINN) [11] project
is arguably one of the most influential ones, with realistic visual perception tasks and performance
target of real-time processing. However, the tiny scale, oversimplified structure of early day neural
networks, the primitive imaging sensors as well as abysmal computing power limited the usability of [11]
in reality.

Subsequently, many improvements to ALVINN have been proposed. Hadsell et al. [12] developed
a more stable system for navigation in unknown environments by incorporating a self-supervised
learning framework capable of long-range sensing. This system is capable of accurately classifying
complex terrains at distances up to the horizon (from 5 to over 100 m away from the platform, far
beyond the maximum stereo range of 12 m), thus significantly improving path-planning.

Recently, Giusti et al. demonstrated a quadrotor platform autonomously following forest trails
in [13]. They formulated the optimization of heading orientation as a three-class classification problem
(Left, Front and Right) and captured a series of forest trail images with 3 inboard cameras, each facing
Left, Front and Right, respectively. Given one image frame, the deployed CNN model determines the
optimal heading orientation among the three available choices: left turn, straight forward or right turn.
The major drawback of this design is the limited number of choices of three (due to three cameras),
which is a compromise between steering accuracy and quadrotor load capacity.

2.2. Spherical Cameras in Navigation

There are a few published prior attempts on navigation based on spherical cameras, however,
their performances are adversely affected by either rectification errors in pre-processing or lack of
accurate reference frame.

First, considering the heavy barrel distortion due to the ultra wide-angle lens (e.g., omnidirectional
cameras, fish-eye cameras, and spherical cameras), conventional navigation applications usually require
pre-processing efforts such as calibration and rectification (i.e., removing fisheye effects). For example,
Li [33] proposed a calibration method for full-view spherical camera images. We argue that this
pre-processing steps incur unnecessary computational complexity and accumulate errors thus we
favor the alternative approach, i.e., navigation based directly on spherical images.
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A related but subtly different research field, spherical rotation estimation, has been investigated
as early as a decade ago. For example, Makadia et al. [34,35] estimated 3D spherical rotations via
the transformations induced in the spectral domain, and directly via the sphere images without
correspondence, respectively. A recent paper by Bazin et al. [36] estimated spherical rotations based on
vanishing points in omnidirectional images. Caruso et al. [6] proposed an image alignment method
based on a unified omnidirectional model, achieving fast and accurate incremental stereo matching
based directly on curvilinear, wide-angled images.

For the former “calibration and rectification” based methods, the error-accumulating pre-processing
step would be eliminated if raw spherical images are directly used for navigation. For the latter group of
methods, a major difference of these “spherical rotations estimation” attempts from the navigation
tasks is the requirement of reference image frame: in rotation estimation problems, an estimated
rotation angle is evaluated with respect to the reference image frame; however, reference image frames
are almost never readily available in robot navigation applications. To overcome these limitations,
a highly accurate, raw spherical image based “navigation via classification” framework is proposed in
this paper.

3. CNN Based Robot Navigation Framework Using Spherical Images

Deep convolutional neural networks have been widely used in many computer vision and image
sensing tasks, e.g., object detection [21,22], semantic segmentation [25], and classification [29,37,38].
In this section, a convolutional neural network based robot navigation framework is formulated
to accurately estimate robot heading direction using raw spherical images. Figure 1 illustrates our
capturing hardware platform, with a spherical camera mounted on a wheeled robot capable of
capturing 360◦ fisheye panoramas.

3.1. Formulation: Navigation via Classification

Given a series of N spherical images x1, · · · , xN sampled at time instances 1, · · · , N, respectively,
the target of robot navigation can be formulated as the estimation of the optimal discrete heading
direction {yn}N

n=1 ∈ Y, with Y being some predefined turning options determined by robot tasks and
complexity settings. Without loss of generality, let

Y = {Y0, Y±1, · · · , Y±K} (1)

where positive and negative k values represent anticlockwise and clockwise turn, respectively. Larger
‖k‖ values denote larger turning angles. The cardinality of Y (i.e., 2K + 1, the number of navigation
choices) could be conveniently set to satisfy the turning precision requirements of any given robot
navigation application. Specifically, define Y0 = 0◦ as the option to keep the current heading direction
(straight forward).

With this model, the navigation task is the minimization of the global penalty L over the entire
time instance range n = 1, · · · , N,

L =
N

∑
n=1
{1− δ(ŷn, yn)} (2)

in which ŷn = F(xn; w, b) denotes network prediction at time instance n based on spherical image data
xn, where F(x; w, b) is a non-linear warping function learned with a convolutional neural network,
w and b being the weights and bias terms, respectively. yn is the ground truth denoting the manually
marked, optimal heading direction; and δ(ŷn, yn) is the Kronecker delta,

δ(ŷn, yn) =

{
0 if ŷn 6= yn,

1 if ŷn = yn.
(3)
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3.2. Network Configuration and Training

Inspired by Alexnet [29] and Giusti et al. [13], a new convolutional neural network based robot
navigation framework for the spherical images is proposed as shown in Figure 2.

Following the naming convention of current popular convolutional neural networks [13,29],
convolutional layers (Conv), pooling layers (Pool) and fully connected layers (FC) are illustrated in
Figure 2. The proposed network consists of four convolutional layers, three pooling layers, and two
fully connected layers. Each convolutional layer is coupled with a max-pooling layer to enhance the
local contrast.

Table 1 summarizes the network parameter settings of each layer of three networks, i.e., the
baseline Giusti [13] network, the proposed “Rectified Linear Units” (ReLU) [39] based Model 1
network and another proposed “Parametric Rectified Linear Units” (PReLU) [40] based Model 2
network. Giusti et al. incorporated the scaled hyperbolic tangent activation function (Tanh) in [13]
but did not provide the rationale behind this specific choice of non-linear warping function. In our
experimental evaluation, we observe that both the ReLU based Model 1 network and the PReLU based
Model 2 network outperform the Tanh units based one.

Table 1. Comparsions of network structure and layer parameters of convolutional neural networks (CNNs).

Features Giusti [13] Proposed Model 1 Proposed Model 2

0 3 × 101 × 101 Inputs Inputs Inputs
1 32 × 98 × 98 Conv Conv Conv
2 32 × 49 × 49 Pool Pool Pool
3 - Tanh ReLU BN + PReLU
4 32 × 46 × 46 Conv Conv Conv
5 32 × 23 × 23 Pool Pool Pool
6 - Tanh ReLU BN + PReLU
7 32 × 20 × 20 Conv Conv Conv
8 32 × 10 × 10 Pool Pool Pool
9 - Tanh ReLU BN + PReLU

10 32 × 7 × 7 Conv Conv Conv
11 32 × 3 × 3 Pool Pool Pool
12 - Tanh ReLU BN + PReLU
13 288→200 FC1 FC1 FC1
14 - Tanh ReLU PReLU
15 200→K FC2 FC2 FC2

Input Conv1 Conv2 Conv3 Conv4 FC1 FC2

3*101*101 32*98*98 32*23*23 32*10*10 32*7*7 200 K

Pool1 Pool2 Pool3

Figure 2. Proposed convolutional neural network based navigation framework. It consists of four
convolutional layers, three pooling layers, and two fully connected layers. The inputs are raw,
uncalibrated spherical images and the outputs are navigation signals (steering direction and angles).
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Optimizing a deep neural network is not trivial due to the gradient vanishing/exploding problem.
In addition, it is also possible that optimization got stuck in a saddle point, resulting premature
termination and inferior low level features. This becomes especially challenging for spherical images,
due to their similar visual appearance.

To combat the aforementioned challenges, the Batch Normalization (BN) [41] is incorporated in
the Model 2 network as shown in Table 1, which forces the network’s activations to generate larger
variances across different training samples, accelerating the optimization in the training phase and
also achieving a better classification performance.

During the training phase, both the Models 1 and 2 networks are optimized with the adaptive
subgradient online learning (Adagrad) optimizer [42], allowing the derivation of strong regret
guarantees. In addition, online regret bounds can be converted into a rate of convergence and
generalization bounds. The usage of Adagrad optimization method eliminates the need of tuning
the learning rates and momentum hyper-parameters as in the stochastic gradient decent (SGD)
methods [43].

4. Spherical-Navi Dataset

A dataset with balanced class distributions is crucial for the effective training of a classification
model. A common pitfall of navigation training dataset is the shortage of negative training samples.
The negative samples typically represent wrong heading directions and could lead to accidents such
as collision, hence they are not sufficiently collected in practice (to avoid damage to robot platform).

Inspired by [13], we propose to use spherical images for address this challenge. For one thing,
every single spherical camera is capable of capturing a 360◦ fisheye panorama, covering all possible
heading directions, including wrong ones. For another thing, negative training samples could be
conveniently generated by directly annotate the same 360◦ fisheye panorama with an arbitrary number
of wrong heading directions.

The following part of this section provides details on the proposed spherical image dataset, which
is flexible with arbitrary number (2K + 1 as in Equation (1)) of navigation choices (At each time instance
n, heading directions yn = −YK, · · · , 0, · · · , YK are all potential navigation choices).

4.1. Data Formulation

As shown in Figure 1B, an upward-facing spherical camera captures its 360◦ surroundings and
maps the scene into a non-rectilinear image. These spherical images share one distinctive characteristic,
i.e., azimuth rotations of these cameras only lead to a simple two dimensional rotation of their captured
images, as shown in Figure 3. The robot platform rotates from +70◦ to −70◦, the captured spherical
images (Figure 3a–g) are corresponding 2-dimensional rotations of each other.

(a)
+70◦

(b)
+50◦

(c)
+30◦

(d)
0◦

(e)
−30◦

(f)
−50◦

(g)
−70◦

Figure 3. Sample images when an upward-facing spherical camera rotates. The central bottom
pixels are the current heading direction of the robot platform and the red arrows represent one
specific potential direction. The azimuth rotations of the robot platform merely lead to corresponding
2-dimensional rotations of the spherical images.
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4.2. Data Capturing

A robot platform shown in Figure 1A is used to collect images for training. The upward-facing
spherical camera is mounted on top of the platform with a clearance of approximately 1.9 m above
the ground, where the typical occlusions such as those caused by pedestrians and parked vehicles are
rare. In total, we have captured ten video sequences with the robot platform traversing the school
campus of Northwestern Polytechnical University, Xi’an, Shaanxi, China. The videos are captured at
60 frames per second with a resolution of 4608× 3456. To increase the variety of the scenes in this
dataset, navigation paths have been manually designed to cover as many feasible locations as possible.
In addition, we also designed some overlapping path segments in these video sequences to discourage
machine learning algorithms from simply “memorizing the routes”. Figure 4 shows typical example
images in this dataset (Videos are publicly avaliable online at: https://hijeffery.github.io/PanoNavi).

Figure 4. Sample images from the proposed Spherical-Navi dataset. Data collection is carried out
throughout the school campus of Northwestern Polytechnical University, Xi’an, Shaanxi, China, and
under different illumination conditions (i.e., different weather, time-of-day).

4.3. Data Preparation

Due to the movement of the robot platform and lack of image stabilization, vibration could
deteriorate a small fraction of video frames significantly. Therefore, the local temporal relative
sharpness measurement Vi,p [44] is incorporated to reject low quality image frames,

Vi,p =
∑q∈N (p) ‖∇Ji,q‖1

∑M
j=1 ∑q∈N (p) ‖∇Jj,q‖1 + ε

(4)

where Vi,p is a normalized local sum of gradient magnitudes, with Ji denoting i-th frame in a sequence
of M frames, Ji,p as its p-th pixel, N (p) as the set of spatially neighboring pixels of p, and the temporal
relative sharpness of frame Ji with P pixels is measured as the mean of local relative sharpness:

Vi =
∑P

p=1 Vi,p

P
(5)

Additionally, temporal subsampling is carried out to reduce the very high temporal correlation
between consecutive frames, since the video capturing frame rate is relatively high given the limited
maximum speed of the robot platform. Without loss of generality, two video frames are randomly
sampled (without replacement) per second (from the original 60 frames, less blurry frames that fail the

https://hijeffery.github.io/PanoNavi
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Equation (5) criterion, if any). Six video sequences (with a total of 2000 frames) are randomly selected
as training data; while the remaining 1500 frames from the other four video sequences are kept as
testing data.

4.4. Label Synthesis

In the proposed “navigation via classification” framework, the optimal heading direction at time
instance n is

yn ∈ {−YK, · · · , 0◦, · · · , YK} , (6)

with Y‖K‖ denoting the maximum steering angle (in degrees) permitted by the robot platform. In our
experimental settings, YK = 90◦ (anticlockwise turn) and Y−K = −90◦ (clockwise turn). Collection
of the positive labels (i.e., spherical images with correct heading direction) is trivial: manual inputs
from the remote control are directly paired with the corresponding video frame. As is shown in
Figure 3, azimuth rotations of an upward-facing spherical camera only lead to a planer rotation about
the ground normal (z axis, which is perpendicular to the horizon). Therefore, negative label could be
easily synthesized.

After the robot platform has finished one capturing drive (without crashing) under manual
remote control, the manual navigation inputs {yn}N

n=1 inputted by human are used directly as positive
training labels (Positive training samples are image-label pairs denoting optimal heading direction,
the label yn itself does not have a ‘positive’ degree value. By definition in Equation (6), yn = Y0 = 0◦).
More importantly, arbitrary number of negative samples could be conveniently synthesized at virtually
no risk or cost at each time instance n by assigning alternative values to {yn}N

n=1. Figure 5 illustrates
the synthesis of negative labels with various k values (k = ±1, · · · ,±K, larger ‖k‖ denotes larger offset
from the optimal heading direction).

To minimize the dataset bias [45], most of the synthesized image-label pairs are sampled adjacent
to the optimal heading direction (i.e., with small Y‖k‖ values). In this way, the training set is
statistically better matched with real navigation scenarios and empirically leads to a lower probability
of consecutive contradictory steering decisions.

Figure 5. Negative Label Synthesis. Red arrow denotes the optimal heading direction, i.e., manual input
from a remote control. Negative labels are rotations of this optimal heading direction, k = ±1, · · · ,±K.
More image-label pairs are synthesized with small rotation angles (small ‖k‖ values) with respect to
the optimal heading direction, in order to enhance the navigation “inertia”, i.e., to avoid frequent,
unnecessary drastic steering adjustments.

5. Experimental Results

5.1. Sky Pixels Elimination

The proposed robot platform collects data under various illumination conditions, due to different
time-of-day and weather. Before feeding the spherical images into training networks, the central sky
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pixels (within a predefined radius) are masked out. Empirically, we found that these sky pixel values
are heavily susceptible to illumination changes and our network gains 1%+ overall classification
accuracy if these sky pixels are masked out. Subsequently, spherical images are normalized in the YUV
color space to achieve zero mean and unit variance.

5.2. Network Setup and Training

Three algorithms are compared on the proposed Spherical-Navi dataset in Table 1. All of them
share identical convolutional layers with the filter size 4. Their following pooling layers are of
“Max-pooling” type, which select the local maximum values from the winning neurons.

We follow the training configurations in Giusti et al. [13], with weights initialized as in [40] and
biases initialized by zeros. During the training procedure, a higher initial learning rate (10−4) is selected
for the proposed “Model 1” than that (10−5) in the proposed “Model 2”. When the training loss stops
decreasing, the learning rate is adjusted to one-tenth of the previous one. For better generalization to
the testing phase, a mini-batch of size 10 is incorporated and all training samples are shuffled before
each epoch. The training losses are illustrated against epoch in Figure 6, where our “Model 2” with
batch normalization achieves significantly faster convergence to “better” local minima with smaller
training loss value.

The proposed “Model 1” and “Model 2” algorithms are developed with the Torch7 deep learning
package [46] and the respective network parameters are summarized in Table 1. With the proposed
models and Spherical-Navi Dataset, all training procedures finish within 3 days using a PC with
one Intel Core-i7 3.4 GHz CPU, or less than 20 h with a PC equipped with one Nvidia Titan X GPU.
During the testing procedure, it takes the Nvidia Jetson TK1 installed onboard the robot platform only
10 milliseconds to process each spherical image.

Figure 6. Training losses of competing models with the Adagrad optimizer. The learning rate is
decreased by a factor of ten every 500 epochs. Our proposed “Model 2” with “Batch Normalization”
achieves the fastest convergence and the lowest training loss.

5.3. Quantitative Results and Discussion

Table 2 summarizes the overall classification accuracies among competing algorithms with
different number of navigation choices (i.e., 2K + 1 as in Equation (1)). The LIBSVM [47] software
with default settings (RBF kernel, C = 1, γ = 0.04) is chosen to implement the popular Support Vector
Machine (SVM) classifier as a competing baseline. All deep learning based algorithms have achieved
evident performance gains against the SVM baseline in various K settings. Generally, with more
navigation choices (larger K), the classification accuracies drop for all competing algorithm, due to
the increased complexity in the multiclass problem. Another factor that might contribute to imperfect
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classification is the camera mounting calibration, there could be some small rotating movements in the
spherical camera during the capture process due to vibration.

Additionally, Figure 7 provides the multi-class classification confusion matrix [48,49] with
7 navigation choices (2K + 1 = 7, last row in Table 2). With more navigation choices, spherical
images from adjacent heading directions appear even more visually similar. The misclassification
of adjacent choices leads to relatively larger sub-diagonal and super-diagonal values than other
off-diagonal elements. We also note that while the robot platform is moving along a long stretch of
straight path with non-distinctive scenes, Left3 view (leftmost view with yn perpendicular to drive
path) appears to be a horizontal/vertical flip of Right3 view (rightmost view with yn perpendicular
to drive path). This visual similarity could contribute to the slightly higher value in the upper-right
element in the confusion matrix in Figure 7.

Table 2. Classification Accuracies on the Spherical-Navi dataset.

Navigation Choices (i.e., 2K + 1) SVM [47] Giusti [13] Proposed Model 1 Proposed Model 2

3 choices (K = 1) 84.03% 91.14% 92.64% 94.30%
5 choices (K = 2) 78.92% 83.01% 84.82% 93.07%
7 choices (K = 3) 70.30% 73.12% 72.36% 87.73%
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Figure 7. Classification confusion matrix filled with normalized accuracies in the case of 7 navigation
choices. Diagonal elements denote correct classification; while off-diagonals denote mistakes.

Deep learning based methods can be generally regarded as a superbly discriminative feature
extractor, and Figure 8 illustrates the progressive discriminability enhancement procedure layer after
layer. Class-wise aggregated 8000 sample training images are fed into the proposed “Model 2” network
with 7 navigation choices (K = 3). The input of FC1 layer (i.e., the output from the last CONV layer),
the output of FC1 layer (i.e., the input of FC2 layer) and the output of FC2 layer are visualized in
Figure 8a–c, respectively. As the dimension of features decreases from 288 in “FC1 input” to 7 in “FC2
output” (Please refer to the last column in Table 1 for the layer structure of the proposed “Model 2”
network), features are condensed into more compact and discriminative format, which is visually
verifiable by inspecting the distinctive patterns in Figure 8c.
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(a) FC1 input (b) FC1 Output/FC2 Input (c) FC2 Output

Figure 8. Extracted features from different layers in the proposed “Model 2” network with ordered
8000 sample training images and 7 navigation choices (X-axis: feature dimension; Y-axis: index of
samples, best viewed in color). The network nonlinear mappings of fully connected layer 1 (FC1)
((a)→(b)) and FC2 ((b)→(c)) enhance the discriminability one after another.

5.4. Robot Navigation Evaluation

The robot navigation performance of the proposed “Model 2” network (with 7 navigation choices)
is evaluated in this section via multiple navigation tasks.

In the first simulated evaluation, a special test drive path (covering all possible heading directions)
is manually selected, visualized in Figure 9a and discretized in Figure 9b to match the number of
available navigation choices. The robot platform (as shown in Figure 1A) is subsequently deployed
with the exact navigation manual input in Figure 9b and a series of evaluation spherical images are
collected correspondingly. These spherical images are then fed into the trained network as testing
images and the predicted heading directions are visualized in Figure 9c.

(a) Ideal Navigation
heading directions

(b) Discretized manual
inputs

(c) Predicted heading
directions

Figure 9. Robot Navigation Simulation. X-axis: frame index; Y-axis: sine of heading direction angle.
The ideal, manually selected navigation path in (a) covers the entire possible heading direction angle
yn, from 0◦ to 90◦, then −90◦ and back to 0◦. Therefore, sin(yn) covers [−1, 1]. (b) Limited by the
7 navigation choices, the robot navigation inputs are discretized. (c) visualizes the network predictions
based purely on the collected spherical images.

The overall average prediction accuracy in Figure 9c is 87.3%, as compared to the ground truth in
Figure 9b. Most of the misclassification errors happen during confusing the adjacent heading direction
classes, which is understandable given the spatial similarity of typical scenes.

In the following real-world navigation evaluation, the robot platform (as shown in Figure 1A)
is deployed in the Jing-Wu Garden (as shown in Figure 10) inside the campus of Northwestern
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Polytechnical University, Xi’an, Shaanxi, China. The tested paths cover both paved walking trails and
unpaved surfaces (mostly lawn).

Figure 10. Jing-Wu Garden, inside the campus of Northwestern Polytechnical University, Xi’an,
Shaanxi, China, where the navigation of the robot platform was tested.

3 separate tests (Test 1 is shown in Figures 11a–c and 12a–c. Test 2 is shown in Figures 11d–f and
12d–f. Test 3 is shown in Figures 11g–i and 12g–i) are conducted under various road conditions in
3 phases:

1. Training data collection (Training data collection is illustrated in Figure 11a,d,g and
Figure 12a,d,g): the robot platform is manually controlled to drive along 3 pre-defined paths
multiple times, and the collected spherical images with synthesized optimal heading directions
(detailed in Section 4.4) are used for “Model 2” network training.

2. Navigation with raw network predictions (Navigation with raw network predictions is illustrated
in Figure 11b,e,h) and Figure 12b,e,h): the robot platform is deployed at the starting point of each
trail and it autonomously navigate along the path with raw network predictions as inputs.

3. Navigation with smoothed network predictions (Navigation with smoothed network predictions
is illustrated in Figure 11c,f,i) and Figure 12c,f,i): the robot platform is deployed at the starting
point of each trail and it autonomously navigate along the path with smoothed network
predictions as inputs. The smoothing is carried out with a temporal median filter of size 3.

The ideal heading directions and ideal two-dimensional trails are shown in Figure 11a,d,g and
Figure 12a,d,g, respectively. A total of 7 heading direction choices are available at each frame, with 0
for straight forward, positive values for right turns and negative values for left turns. While navigating
through corners, a series of consecutive small turning maneuvers (multiple +1 and −1 heading
directions in Figures 11 and 12) are preferred over sharp turns, allowing more training samples to be
collected during these maneuvering frames.

Figure 11b,e,h demonstrate the raw predictions out of the “Model 2” network. Overall, vast
majority of predictions are accurate for the straight forward (heading direction 0) sequences; while
small portions of turning maneuvers are overestimated (with predicted heading directions ±2 and
±3). This could arise from the ambiguity of consecutive small turns and a single sharp turn achieving
identical drive trail. In addition, there are only very subtle appearance differences during the limited
number of frames while making turning maneuvers, which could result in confusions. In conjunction
with the sporadic appearances of pedestrians, these confusions could lead to the spurious heading
directions with excessive values (±2 and ±3). To remedy the situation, temporal coherence of heading
directions need to be addressed. Empirically, a naive temporal median filter with window size 3 is
effective enough to remove most spurious results, as shown in Figure 11c,f,i.
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(a) Test 1, ideal heading
directions. Short path with
3 right turns.

(b) Test 1, raw predictions
out of Model 2 network

(c) Test 1, smoothed
predictions using a
temporal median filter

(d) Test 2, ideal heading
directions. Long path with 5
right turns and 8 left turns.

(e) Test 2, raw predictions
out of Model 2 network

(f) Test 2, smoothed
predictions using a
temporal median filter

(g) Test 3, ideal heading
directions. Long path with
3 right turns and 1 left turn.

(h) Test 3, raw predictions
out of Model 2 network

(i) Test 3, smoothed
predictions using a
temporal median filter

Figure 11. Robot navigation heading directions in 3 separate tests. X-axis: frame index; Y-axis: heading
direction choices (0, ±1, ±2, ±3, positive values for right turns and negative values for left turns).
(a,d,b) are manually labeled ideal heading directions; (b,e,h) are corresponding raw predictions from
the proposed “Model 2” network; (c,f,i) are smoothed predictions using a temporal median filter of
size 3.

Figure 12 demonstrates the corresponding 2D trails of Figure 11. A few overestimated turning
maneuvers in Figure 11b,e,h lead to wildly different trails (Figure 12b,e,h) from the ideal ones
(Figure 12a,d,g). However, the smoothing-with-median-filtering remedy is highly successful in
Figure 12c,i, only with Figure 12f showing an obvious difference from the Figure 12d towards the end
of Test 2. A demonstration video is available online (Video demo: https://www.youtube.com/watch?
v=4ZjnVOa8cKA.)

https://www.youtube.com/watch?v=4ZjnVOa8cKA
https://www.youtube.com/watch?v=4ZjnVOa8cKA
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(a) Test 1, ideal 2D trail.
Short path with 3 right
turns.

(b) Test 1, robot trail using
raw predictions directly as
navigation input

(c) Test 1, robot trail using
smoothed predictions as
navigation input

(d) Test 2, ideal 2D trail.
Long path with 5 right turns
and 8 left turns.

(e) Test 2, robot trail using
raw predictions directly as
navigation input

(f) Test 2, robot trail using
smoothed predictions as
navigation input

(g) Test 3, ideal 2D trail.
Long path with 3 right turns
and 1 left turn.

(h) Test 3, robot trail using
raw predictions directly as
navigation input

(i) Test 3, robot trail using
smoothed predictions as
navigation input

Figure 12. Robot navigation 2D trails in 3 separate tests. (a,d,g) are manually selected ideal drive trails;
(b,e,h) are trails with raw network predictions as navigation inputs; (c,f,i) are trails with smoothed
network predictions as navigation inputs.

6. Conclusions

In this paper, a Convolutional Neural Network-based robot navigation framework is proposed
to address the drawbacks in conventional algorithms, such as intense computational complexity in
the testing phase and difficulty in collecting high quality labels in the training phase. The robot
navigation task is formulated as a series of classification problems based on uncalibrated spherical
images. The unique design of training data preparation eliminates time-consuming calibration and
rectilinear correction processes, and enables automatic generation of an arbitrary number of negative
training samples for better performance.
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One potential improvement direction is the incorporation of temporal information via Recurrent
Neural Networks (RNNs)/Long Short Term Memory networks (LSTMs). In addition, there are
also multiple related problems for future research, such as indoor navigation and off-road collision
avoidance. Source codes of the proposed methods and the Spherical-Navi dataset are available for
download on our project web page (Project page: https://hijeffery.github.io/PanoNavi/).
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