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ABSTRACT

Spatio-temporal contexts are crucial in understanding human
actions in videos. Recent state-of-the-art Convolutional Neu-
ral Network (ConvNet) based action recognition systems fre-
quently involve 3D spatio-temporal ConvNet filters, chunking
videos into fixed length clips and Long Short Term Memory
(LSTM) networks. Such architectures are designed to take ad-
vantage of both short term and long term temporal contexts,
but also requires the accumulation of a predefined number
of video frames (e.g., to construct video clips for 3D Con-
vNet filters, to generate enough inputs for LSTMs). For ap-
plications that require low-latency online predictions of fast-
changing action scenes, a new action recognition system is
proposed in this paper. Termed “Weighted Multi-Region Con-
volutional Neural Network” (WMR ConvNet), the proposed
system is LSTM-free, and is based on 2D ConvNet that does
not require the accumulation of video frames for 3D ConvNet
filtering. Unlike early 2D ConvNets that are based purely on
RGB frames and optical flow frames, the WMR ConvNet is
designed to simultaneously capture multiple spatial and short
term temporal cues (e.g., human poses, occurrences of ob-
jects in the background) with both the primary region (fore-
ground) and secondary regions (mostly background). On both
the UCF101 and HMDBS51 datasets, the proposed WMR Con-
vNet achieves the state-of-the-art performance among com-
peting low-latency algorithms. Furthermore, WMR ConvNet
even outperforms the 3D ConvNet based C3D algorithm that
requires video frame accumulation. In an ablation study with
the optical flow ConvNet stream removed, the ablated WMR
ConvNet nevertheless outperforms competing algorithms.
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line Prediction, Multi-region, ConvNet
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Fig. 1: Background offers helpful auxiliary information in
determining human actions. (a) Original frames. (b) Masked
frame.

1. INTRODUCTION

Generally, there are two types of action recognition methods,
one based on the handcrafted conventional features and the
other based on deep neural networks [1, 2, 3, 4, 5]. Among
the former type, the iDT [6] achieves the state-of-the-art per-
formance but it is also excessively computational expensive,
due to its requirements of dense video trajectories. Thanks
to the advancements in deep learning [7, 8], recent Convo-
lutional Neural Network (ConvNet) based action recognition
systems frequently involve 3D spatio-temporal ConvNet fil-
ters [9, 10] and chunking videos into fixed length clips. Such
architectures are capable of exploiting even long term tempo-
ral contexts, but they require the accumulation of a predefined
number of frames (e.g., to construct video clips for 3D Con-
vNet filters). For applications that require low-latency online
predictions, alternative design of action recognition system
need to be developed.

Alternatively, multi-stream ConvNet (typically with an
optical flow stream) based methods have received tremendous
attention in recent years, such as “Two-Stream” [11] and its
derivatives [12, 13]. These methods are based on conven-
tional 2D ConvNet, thus hardly requires video frame accu-
mulation during prediction. Despite their lack of explicit 3D
spatio-temporal ConvNet filters, they are still among the top
performers on the UCF101 [14] and HMDBS51 [15] datasets.

Despite the successes, these “Two-Stream” methods lack
a holistic way of incorporating context information in video



frames. Traditionally viewed as a source of noise, the back-
ground itself arguably offers valuable auxiliary information
[16, 17, 18] to recognize the characteristics of the human ac-
tions. A typical example is illustrated in Figure 1 (b). Even
with the basketball player completely censored, the surround-
ing scene of the basketball court (especially the mid-air ball)
provides substantial clues to recognize the “playing basket-
ball” action.

Based on the aforementioned intuition, the “Weighted
Multi-Region” (WMR) ConvNet is proposed to capture the
context information from both the foreground and the back-
ground. Video frames are first fed into a fine-tuned Faster R-
CNN [19] network to localize the “foreground” with a bound-
ing box, which is termed the primary region. Subsequently,
multiple secondary regions per video frame are obtained with
the Selective Search algorithm [20] with varying intersec-
tion of Union (IoU) values with the primary region. Each
testing image is fed into convolutional layers with the ROI-
pooling [21] over the extracted primary region and secondary
regions, as illustrated in Figure 2. After the final stages of
the RGB image stream and optical flow image stream, a fu-
sion layer is added to account for the contributions from both
streams, based on which the final predictions are made.

In the testing phase, the proposed WMR ConvNet pro-
cesses frame-by-frame in the spatial ConvNet (RGB input)
and 10-frame-after-10-frame in the temporal ConveNet (Op-
tical flow input). Therefore, a maximum delay in processing
is about 0.3 second (assuming 30 fps). On contrary, conven-
tional action recognition methods typically require 3D convo-
lution and LSTM-style temporal postprocessing, which could
incur much higher latency. For example, video clip-based
methods need to process multiple clips (each clip last about
0.5 seconds) before generating a prediction, which leads to
latency of several seconds to tens of seconds.

The major contributions of the paper are as follows.

o A new WMR ConvNet with “two-stream” 2D ConvNet ar-
chitecture suitable for low-latency online prediction.

e An effective multi-region spatial sampling strategy that
captures more informative spatial (RGB stream) and tem-
poral (optical flow stream) contexts.

e The proposed WMR ConvNet achieves the state-of-the-art
recognition accuracy on both the UCF101 and HMDBS51
dataset, among competing low-latency algorithms.

2. RELATED WORK

Action recognition has been extensively studied in past few
years [22, 6, 23, 11, 24, 9, 25, 10]. There are mainly two
types of methods: conventional shallow feature based ones
and those with deep neural network based ones. The im-
proved Dense Trajectory (iDT) [6] method is the current state-
of-the-art among the former type, in which the optical flow
is utilized to estimate dense trajectories, followed by feature
extractions around the trajectories. Inspired by the success

of deep learning in tasks of image understanding, many re-
searchers have attempted to incorporate deep architectures for
action recognition. A major difference between image based
tasks and video based tasks is the extra temporal information
in videos, which is critical for action recognition.

One of the most successful architectures in action recog-
nition is two-stream network [11]. In that paper, the authors
use one CNN stream with the RGB frame as input to capture
spatial information and another CNN stream with the stacked
optical flow frames as input to capture temporal information.
At the end of the last softmax layer, a score fusion method
is established to merge spatio-temporal information. Besides
these 2D ConvNet based approaches (with low-latency online
prediction capability), the C3D architecture proposed in [9]
is proved to be a good tool of extracting features for videos.
In that paper, the authors extend traditional two dimensional
convolution to three dimensional convolution, which captures
spatio-temporal information adequately. However, these 3D
ConvNet [9, 13] based methods require video frame accu-
mulation during prediction, thus unfit for action recognition
applications with low-latency prediction requirements.

Since there are multiple cues in a still image, it’s feasible
to run action recognition on image level. R*CNN [26] is an
efficient work in action recognition of still images, in which
R-CNN [27] is adapted to multiple proposal regions. Differ-
ent from this method, our proposed method is deployed on
video action recognition task, and the UCF101 and HMDBS51
video datasets have no ground truth bounding boxes.

Another work that is similar to our method is Dynamic
Network [28], which summarizes the cues and information
in video clips into a dynamic image, then feeds the dynamic
image into a well-developed ConvNet to predict the label of
the video.

3. PROPOSED WMR CONVNET

The proposed WMR ConvNet is illustrated in Figure 2. Given
an image I, we first feed it into a fine-tuned Faster R-
CNN [19] and Selective Search [20] pipeline to obtain pri-
mary region (object proposal region with the highest confi-
dence score) and secondary regions (other object candidate
proposal regions other than the primary region), respectively.
Then we input these annotations and I to an adapted VGG-16
network [29]. An ROI Pooling layer is established to reuse the
learnt feature maps in primary region and secondary regions.
Then features of primary region and secondary regions are fed
into three fully connected layers separately. In order to obtain
the most informative secondary region for each action, we use
max operation on the output of fully connected layers of the
secondary region path. After obtaining maximum among sec-
ondary region scores, we add it to the primary score. Finally
a softmax operation is established to transform scores into
probabilities, which can be used to classify videos. Our full
pipeline contains two paths of basic architecture: the one with
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Fig. 2: WMR ConvNet architecture. The RGB input is fed into a spatial ConvNet and a regions extraction pipeline separately.
We use Faster R-CNN to extract primary region, i.e., the region of human bounding box (red bounding boxes) and Selective
Search to extract secondary region proposals, i.e., the regions with contexts and cues (cyan bounding box). After the ROI-
pooling layer, primary region and selected secondary regions are fed into fc layers separately. Finally a softmax layer is set to
fuse the scores from both regions.The stacked optical flow inputs reuse the regions of RGB input.

RGB input and the one with optical flow input. At the end of
the pipeline, a fusion scheme is established to predict the final
classification probability. Each part is detailed below.

Region Proposal Generation. Since the two main bench-
marks of human action recognition in video have no bound-
ing box annotations, we come up with a solution to use
Faster R-CNN to annotate them. We first annotate bound-
ing boxes manually for N; and Ny RGB frames in training
set of UCF101 and HMDBS]1, respectively. We only label
the bounding box that contains the person in foreground. We
then fine-tune on Faster R-CNN using only two classes: back-
ground and person. We choose the box with the max score of
person as the annotation of the frame. In this way we want to
train a model that circles out action performers in videos au-
tomatically. Compared with using pre-trained model directly,
our method can annotate person in videos more accurately.

In order to obtain secondary regions, we first collect re-
gion proposals with Selective Search [20] on RGB images.
Then we choose the region proposals which have an overlap
with the primary region of images. Formally, these regions

can be defined as U (r; I):

U(r;I)={s € S) :1oU(s,r) € [l,ul}, (D

where r is the primary region of the image I, S(I) is the se-
lective search result of I, IoU(s,r) denotes the overlap ratio
between region s and r, [ and w is the lower and upper bound-
ary of overlap range, respectively. In the experiments we use
the faster approximate implementation of Selective Search in
Dlib (http://dlib.net/). When coming to optical flow images,
they have no distinct secondary regions since in the flow im-
ages the still objects and background information are wiped
away. We find that during a small temporal interval, the dis-
placement of background and objects is usually tiny. Based
on this observation, we reuse the union of bounding boxes of
secondary regions from contiguous RGB frames as the sec-
ondary regions of the optical flow image. Formally, we have

2)

where O; is the ith optical flow frame of a video V, I; and
I;4 is the ith and ¢ 4+ 1th RGB frames of V, respectively.
For the primary region of an optical flow image, there are

U(T;Oi) = U(T‘,Il) U U(’I’;Ii+1)7



two ways to obtain it: 1) We get the rectangle region with
the largest average magnitude as the bounding box. 2) We
reuse the union of primary region of the two RGB frames
where the optical flow is calculated. In a nutshell, by setting
primary region and secondary regions reasonably for optical
flow images, we extend the concept of cues and contexts to
flow space.

Learning Representations Using ConvNet. After obtain-
ing bounding boxes, we feed the training image into a convo-
lutional network (ConvNet) to learn a representation of the
image. In this work we use VGG-16 architecture because
of its good performance and relatively low time-cost during
training and testing. In order to train the secondary regions
effectively, we adopt ROI pooling in our work as in [21].
Specifically, we replace the last pooling layer in VGG-16 with
the ROI pooling layer, with the feature maps from previous
layer and annotated region data as input. With it, each re-
gion generates a fixed-size feature map which can be fed into
fully connected layers. Since the feature maps are all cropped
from previous layer of ROI pooling (For example, the conv5-
3 layer for VGG-16), no additional calculation is needed and
this implementation is very efficient.

After the ROI pooling layer, we train the primary region

and secondary regions separately to exploit potential cues.
The primary region and secondary regions are separately fed
to three fully connected layers to generate scores. Specifi-
cally, an extra max operation is carried out in the streams that
process secondary regions. This max operation allows for the
selection of the most informative secondary region for each
action. Subsequently, this max score is fused with the pri-
mary region score with weights of 0.6 for score from primary
region and 0.4 for score from secondary regions. At the very
end, a softmax layer processes the scores to obtain the pre-
dicted probability of each class.
Fusion of RGB Stream and Optical Flow Stream. In the
subsections above, we discussed the basic framework of our
method. Although we demonstrate our framework using RGB
data, we claim here that the input of the framework is also
applicable to optical flow data. Inspired by the popular Two-
Stream architecture in action recognition task, we feed RGB
data and optical flow data into our basic framework sepa-
rately, then combine the outputs of these two networks, as
shown in Figure 2. For each video, 1 frame of RGB data and
10 frames of optical flow data are fed into the basic archi-
tecture, respectively. After that, we merge extracted spatio-
temporal features using a fusion scheme to get final predic-
tion with weights of 0.4 and 0.6 for RGB stream and optical
flow stream, respectively.

4. EXPERIMENTS

We evaluate our method on UCF101 [14] and HMDBS51 [15].
UCF101 contains 13,320 video clips of 101 action classes col-
lected from YouTube. HMDBS51 [15] contains 6766 video

clips from movies and YouTube, annotated into 51 action
classes.

ConvNet Configuration. Our implementation is built on
R*CNN [26] pretrained on ImageNet [30]. An ROI pooling
layer is used to classify multiple ROI regions and two paths of
fully connected layers for the primary region and secondary
regions, respectively. We set initial learning rate to 0.0001
and divide it by 10 after every 50000 iterations. We set the
dropout ratio to 0.6 according to ablation experiments (omit-
ted here due to limited space). We set the batch size to 256
and use 2 images per batch. In total, our model is trained with
200K iterations. For more details on network configurations
and ablation studies, please refer to the extended version [31].
During the training phase, we randomly choose 1 RGB frame
from each training video as input, following [11]. For opti-
cal flow data, we choose 10 frames from each video. During
the testing phase, we sample 25 frames of RGB data and flow
data for each video.

Evaluation. In this subsection we conduct the human body
detection and evaluate its impact on the final result. We label
N; = 2525 RGB images from UCF101, N» = 2177 RGB
images from HMDBS51 to run transfer learning on Faster R-
CNN. After fine-tuning the Faster R-CNN network, we input
a testing image to the network and select the bounding box
with the highest score of person category as the primary re-
gion, which is shown with a red box in each sub figure in
Figure 3. In each row, the first three samples are correctly
annotated (with a green box outside) and the fourth sample is
wrongly annotated (with a red box outside).

From Figure 3 we find that the accuracy of annotation af-
fects the final results heavily. For example, in (d), a hand
of a person playing the bowling (the true label of this frame)
is detected and its pose is similar to pose in “HeadMessage”
videos the ConvNet has seen, thus the testing label is set to it.
In (1), a small part of a green tree is detected, which is sim-
ilar to green grasses in “WalkingWithDogs” videos. In (h),
a white chopping board similar to the snowfield is detected
so the ConvNet classifies this frame to “Skiing”. These ex-
amples show that the region detected as the primary region is
vital for the action recognition task.

In order to obtain secondary regions, we run Selective
Search firstly to get all region proposals. Then select regions
among them using Equation (1) by setting / to 0.1 and u to
0.9. We use two approaches to get the primary regions of op-
tical flow images. The results are shown in Table 1. The ap-
proach reusing bounding boxes of RGB image is better, which
indicates that the cues in RGB data are more useful than mag-
nitude of optical flow.

Feature Fusion Schemes. In addition to weighted sum, we
explore another classifier to fuse features of the two-path net-
works. We propose two alternatives here: 1) For features ex-
tracted from fully connected layers, we concatenate features
from primary region and secondary regions. After that, we
use a linear SVM to classify them. 2) For scores obtained



Fig. 3: The human detection results. Green boxes denote cor-
rect detection; while red boxes indicate wrong detections.

Table 1: Optical flow (u and v channel) results with 2 primary
region annotation methods. 1), a rectangle with max average
magnitude is selected; 2), the bounding box of corresponding
RGB frame is selected. We conduct experiments on « channel
and v channel separately.

Method | Accuracy (u channel) | Accuracy (v channel)
1) 75.3% 75.3%
2) 76.2% 77.4%

after softmax layer, we use either weighted sum or a linear
SVM. In Table 2, we find that results with weighted sum op-
eration are the best. The feature of fcl layer and fc2 layer
are worse than score layer features and weighted sum outper-
forms SVM on score layer features.

Here we compare the proposed ablated WMR ConvNet
with the dynamic image networks (MDI, MDI + static RGB).
Only RGB is used for fair comparison. Table 3 shows the
results of our method and dynamic image networks. We find
that our method outperforms the dynamic image networks.
This indicates the necessity of encoding the cues in video for
our method.

From Table 4, we find that our method is comparable
with iDT and C3D on UCFI101 dataset, and outperforms
other methods on HMDBS51 dataset. Note that C3D [9] re-
quires video frame accumulation during prediction, thus it
is not directly compatible with low-latency online prediction
requirements. This indicates that our proposed WMR Con-
vNet is effective and spatio-temporal cues and contexts are
crucial for human action recognition in videos. = Here we
compare our results on spatial stream ConvNet with other
published results. Table 5 shows that our method outper-
forms the compared methods in spatial domain. This supe-
rior performance demonstrates the effectiveness of exploiting
multi-region based cues in spatial space and indicates that our
method is more suitable for low-latency usage than compared
methods.

Table 2: Fusion methods comparison with RGB data of
UCF101 split-1.

Fusion method Accuracy
fcl + SVM 61.1%
fc2 + SVM 66.5%
score + SVM 73.7%
score + weighted sum 75.9%

Table 3: Comparison with the Dynamic Network [28]. Only
RGB is used for fair comparison.

Method UCF101
static RGB 70.1%
MDI 70.9%
MDI + static RGB 76.9%
ablated WMR ConvNet (RGB only) 78.8%

5. CONCLUSIONS

In this paper, we propose the WMR ConvNet for action recog-
nition with low-latency online prediction requirements. An
efficient multi-region spatial sampling strategy is proposed
to explicitly capture both human related information (e.g.,
poses) and context information, via primary region and sec-
ondary regions, respectively. Such regions are also shared
by the optical flow pipeline, which offers additional tempo-
ral information. Even with the optical flow pipeline removed,
the ablated WMR ConvNet achieves a high recognition accu-
racy of 78.8% on the UCF101 dataset. The complete WMR
ConvNet outperforms all competing 2D ConvNet based al-
gorithms (with low-latency online prediction) and even a 3D
ConvNet based C3D algorithm on the UCF101 dataset.
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