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Abstract—Given only video-level action categorical labels during training, weakly-supervised temporal action localization (WS-TAL)
learns to detect action instances and locates their temporal boundaries in untrimmed videos. Compared to its fully supervised
counterpart, WS-TAL is more cost-effective in data labeling and thus favorable in practical applications. However, the coarse video-level
supervision inevitably incurs ambiguities in action localization, especially in untrimmed videos containing multiple action instances. To
overcome this challenge, we observe that significant temporal contrasts among video snippets, e.g., caused by temporal discontinuities
and sudden changes, often occur around true action boundaries. This motivates us to introduce a Contrast-based Localization
EvaluAtioN Network (CleanNet), whose core is a new temporal action proposal evaluator, which provides fine-grained pseudo
supervision by leveraging the temporal contrasts among snippet-level classification predictions. As a result, the uncertainty in locating
action instances can be resolved via evaluating their temporal contrast scores. Moreover, the new action localization module is an
integral part of CleanNet which enables end-to-end training. This is in contrast to many existing WS-TAL methods where action
localization is merely a post-processing step. Besides, we also explore the usage of temporal contrast on temporal action proposal
(TAP) generation task, which we believe is the first attempt with the weak supervision setting. Experiments on the THUMOS14,
ActivityNet v1.2 and v1.3 datasets validate the efficacy of our method against existing state-of-the-art WS-TAL algorithms.

Index Terms—Action localization, Weakly supervised learning, Temporal Contrast.

1 INTRODUCTION

TEmporal Action Localization (TAL) aims to detect ac-
tions of interest in a video and locate the temporal start
and end of each action instance. Thanks to its numerous
potential applications such as action retrieval, surveillance,
and video summarization [1], [6], [24], [44], TAL has recently
drawn increasing attention from the research community.
While fully-supervised TAL methods [2], [4], [15], [29], [30],
[32], [57], [63] have achieved promising performance, they
rely on temporal boundary annotations of all action in-
stances in untrimmed videos. Obtaining this kind of frame-
level labels is time-consuming and prohibitively expensive,
especially for a large-scale dataset. In this paper, we consider
a more cost-effective setting: weakly supervised temporal
action localization (WS-TAL), which only requires video-
level categorical labels to perform training. It has a great ad-
vantage over its fully-supervised counterpart as the video-
level labels are much easier to collect.

Currently, many existing WS-TAL methods [31], [34],
[38], [47], [53], [61] generate temporal action proposals
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(TAPs) by directly thresholding the classification score of
each video snippet. Achieving localization via such a thresh-
olding pipeline neglects the temporal relations among snip-
pets, which can be critical for action localization. For exam-
ple, action instances are usually preceded and succeeded by
temporal discontinuities, such as special body movements
and sudden scene change. As a result, significant “temporal
contrast” among snippets often occur around true action
boundaries. To precisely locate the action boundaries, the
potential temporal contrast cue can be leveraged on both
WS-TAL task and TAP generation task.

Such observation motivates us to propose a Contrast-
based Localization EvaluAtioN Network (CleanNet), which
leverages the temporal contrast cue among snippets to gen-
erate and evaluate TAPs without temporal annotations. As
illustrated in Figure 1, CleanNet consists of four modules
respectively designed for feature embedding, action classi-
fication, action localization and WS-TAP generation. Given
an input untrimmed video, the feature embedding module
first extracts snippet-level features. Subsequently, the action
classification module produces Snippet-level Classification
Predictions (SCPs) and Snippet-level Attention Predictions
(SAPs), which are subsequently fused to obtain a video-level
prediction. By comparing the video-level predictions and
ground truth labels, a classification loss is calculated and the
action classification module is trained by minimizing it. Af-
terwards, the action localization module generates sliding-
window-based TAPs and computes the “contrast score” of
each TAP from their corresponding SCPs and SAPs. The
action localization module is trained by maximizing the
average contrast score of these survival proposals. After the
training of action localization module, the WS-TAP gener-
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Fig. 1: The proposed CleanNet consists of four components, i.e., a feature embedding module, an action classification
module, an action localization module, and a WS-TAP generation module as denoted by brown, blue, red and green
rectangles, respectively. Training inputs: untrimmed videos with video-level categorical labels. Prediction outputs: action
instance category labels with temporal starts, ends and confidence scores.

ation module generates boundary-based TAPs and fuses
them with the sliding-window-based TAPs to obtain the
final TAL and TAP generation results.

Specifically, the contrast score of each TAP composes
an action score and two edge scores (the starting and
ending scores). They represent the likelihood of the TAP
containing a specific action and the consistency of the TAP
starting/ending with specific action edges, respectively. By
combining these scores, the comprehensive contrast score
can measure both the content and the completeness of TAPs.
Thus, TAPs with higher contrast scores are more likely to
be true action instances. Moreover, in CleanNet, there is an
interaction between action classification and action local-
ization, and they benefit each other. On one hand, action
classification provides SCPs to the TAP evaluator, which
serve as the basis to compute the contrast scores of TAPs. On
the other hand, action localization offers localization-based
filtering of irrelevant frames, as illustrated by the dashed
arrow in the upper right corner of Figure 1, where irrelevant
snippets are regarded as containing no target action when
calculating the classification loss.

Similar to the anchor-based 2D detection methods [40],
the TAP regressor in the action localization module adopts
multi-scale sliding windows with regression for TAP gener-

ation. However, the sliding-window-based TAPs generated
by such a pipeline could be inflexible to fully account for
the variations of the action instance durations. To address
this problem, the WS-TAP generation module generates
boundary-based TAPs, based on the temporal contrast mod-
eled by the TAP evaluator. It accommodates flexible action
durations and provides more accurate temporal boundaries,
as shown in the green box of Figure 1.

Existing TAP generation methods are proposed for fully
supervised TAL methods [9], [13], [15], [30], [44], [63]; while
in the weakly supervised setting, TAP generation is not a
well explored task. Motivated by the fact that regardless of
its temporal durations, any TAP must contain a start and
an end boundary, we propose to obtain TAPs with flexible
durations by connecting potential starts and ends indicated
by the temporal contrast cue.

Taking SCPs and temporal contrast as inputs, the WS-
TAP generation module first obtains the snippet-level
boundary values (SBVs) by accounting for both local and
contextual information (as illustrated in Figure 4). With
SBVs, starting and ending proposals (collectively referred to
as boundary proposals) are generated and evaluated. Subse-
quently, boundary-based TAPs are obtained by exhaustively
connecting one starting proposal with one ending proposal
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(as illustrated in Figure 5). Afterwards, the boundary-based
TAPs and sliding-window-based TAPs are fused by a TAP
fusion scheme to obtain the final TAPs. Finally, these TAPs
together with their contrast scores calculated by the TAP
evaluator are collected as the results for WS-TAL and TAP
generation tasks.

In summary, the key contributions of this paper include
(1) a new TAP evaluator that quantifies the temporal con-
trast among SCPs to facilitate WS-TAL; (2) a new WS-TAP
generation pipeline with a concept of boundary proposals,
which we believe is the first one readily applicable to weakly
supervised setting. (3) a CleanNet with a trainable action
localization module for WS-TAL, where action classification
and localization are mutually beneficial; (4) the state-of-the-
art WS-TAL performance on three benchmarks, which are
even comparable to some fully-supervised TAL methods.

This paper extends our conference paper [64] in four
respects. First of all, this paper explores the TAP genera-
tion task in the weakly supervised setting, by extending
CleanNet with a new WS-TAP generation module, sum-
marized as in contribution (2). Corresponding experiments
on the WS-TAP generation module validate its contribu-
tion on both TAP generation and WS-TAL tasks. Second,
more comparisons and additional qualitative results are
presented to validate the superiority of our CleanNet over
thresholding-based methods. Moreover, more discussions
including strengths and limitations of our method are pro-
vided along with additional qualitative results. Last but not
least, more extensive experiments are carried out to compare
the proposed method and its ablated variants.

The rest of the paper is organized as follows. Section 2
discusses related work about action recognition, fully and
weakly supervised TAL. Afterwards, we present the techni-
cal details of our proposed CleanNet in Section 3. Section 4
introduces how to train the proposed CleanNet. Experimen-
tal results and discussions are presented in Section 5. Finally,
we conclude the paper in Section 6.

2 RELATED WORK

We briefly review related work in action recognition, TAP
generation with full supervision, TAL with full supervision
and weak supervision.

2.1 Action Recognition

Prior to the prevalence of deep neural networks, action
recognition models rely on hand-crafted features [8], [25],
[41], [51]. Among them, the improved Dense Trajectory
(iDT) [51] achieves the best performance. Recently, Con-
volutional Neural Networks (CNNs) have emerged as the
state-of-the-art visual feature extractor and numerous CNN-
based action recognition methods are proposed. Two-stream
networks [12], [45] take as input optical flow in addition
to images in a two-stream architecture, and a fusion of
spatial and temporal features is carried out to obtain action
recognition results. 3D convolutional networks (3D Con-
vNets) [22], [49], [50] take video clips as input to acquire
spatial and temporal correlations among video frames. Tem-
poral segment networks (TSN) [54] capture the long-range
temporal structure with sparse sampling for action recog-
nition. Inflated 3D ConvNet (I3D) [3] combines two-stream

networks with 3D convolutions to further boost the action
recognition accuracy. This architecture is also widely used
as feature backbone in other tasks [20], [55]. Wu et al. [56]
propose a long-term feature bank extracted from the whole
video to help CNNs model long-term information. Slowfast
Networks [11] leverage a fast pathway and a slow pathway
to capture motion and spatial semantics respectively, and
both of them are exploited for video recognition.

2.2 TAL with Full Supervision

Different from the action recognition task which only re-
quires video-level categorical predictions, TAL predicts not
only a categorical label for each action instance but also their
respective temporal boundaries (i.e., starts and ends). Fully-
supervised TAL methods require both types of annotations
during training. Besides, different from the online action
detection task [7], [18], the TAL is an offline task, i.e., the
localization is done after given the whole video.

Thanks to the advancements of deep learning-based
object detection methods, such as R-CNN [17] and its vari-
ants [16], [40], many approaches follow a similar pipeline of
“generating and then classifying TAPs” to perform TAL [2],
[4], [5], [9], [15], [44], [57], [63]. Some of these works [4],
[5], [15] further adjust the Faster R-CNN architecture to
resolve the receptive field issues and make better use
of the contextual information. Recently, the dependencies
among temporal action proposals are considered. BMN [29]
proposes a boundary-matching mechanism to mine the
context information of neighboring proposals. DBG [28]
further leverages proposal-level information for boundary
generation and regression. P-GCN [62], G-TAD [58] and
AGCN [27] capture the proposal-proposal relations lever-
aging the Graph Convolutional Networks (GCN).

2.3 TAP Generation with Full Supervision

Following popular object detection methods such as the R-
CNN and its variants [16], [17], [40], the simplest strategy to
generate TAPs is to exhaustively apply multi-scale sliding
windows or pre-defined temporal durations [2], [9], [36],
[44], [52], [60]. Some other works [4], [5], [15], [57] exploit the
Faster R-CNN architecture [40], and they use anchors and
boundary regression to generate high-quality proposals.

For non-sliding-window-based methods, TAG [63]
adopts the watershed algorithm to generate proposals with
flexible durations and more accurate boundaries. CTAP [13]
proposes a proposal complementary filter to better fuse the
proposals from sliding windows and TAG [63]. BSN [30]
introduces a local-to-global procedure to locate and evaluate
proposals by combining high-probability boundaries. These
special adjustments are reportedly responsible for the im-
provements in TAP generation and TAL performance over
sliding-window-based ones.

2.4 TAL with Weak Supervision

The idea of performing TAL using only video-level categor-
ical annotations (i.e., WS-TAL) was first introduced in [48].
Hide-and-Seek [47] randomly hides regions to encourage
the model to focus on both the most discriminative parts
and other relevant parts of the target. UntrimmedNet [53]
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uses a soft selection module to locate target temporal action
segments, which is similar to temporal attention weights,
and the final localization is achieved by thresholding these
segments after the scoring. Nguyen et al. [34] propose a
sparse loss function to facilitate the selection of segments.
Paul et al. [38] propose a co-activity loss and combine it
with a multiple instance learning loss to train a weakly-
supervised network. The localization parts of these methods
are all based on thresholding on the final SCPs. Yuan et
al. [61] propose a marginalized average attentional network
that can locate the entire action by suppressing the response
of the most salient regions. Recently, many methods focus
on “background suppression” to improve the quality of
snippet-level classification. Liu et al. [31] generate hard
negative videos for context separation and model complete-
ness using multi-branches with a diversity loss. Nguyen
et al. [35] propose background modelling for better back-
ground suppression, and other unsupervised losses to guide
the attention to achieve better TAL performance. Lee et
al. [26] introduce an auxiliary class for background, based
on which, an asymmetrical training strategy is designed
to suppress activations from background frames. Huang
et al. [19] adopt a clustering loss to separate actions from
backgrounds and learn intra-compact features. Min et al. [33]
focus on using triplets to distinguish background features
from activity-related features to achieve action-background
separation. Essentially, these methods reformulate TAL into
a snippet-by-snippet action classification task. The final
action localization is achieved by a simple thresholding over
the snippet-level classification results. Despite its simplicity,
this reformulation is arguably suboptimal, and it leaves a
large room for performance improvement.

The recent AutoLoc [43] directly predicts the temporal
boundaries of each action instance by benefiting from its
“outer-inner-contrastive loss”. The proposed CleanNet is
distinctive from AutoLoc in the following three aspects.
First of all, our TAP evaluator exploits temporal contrast
instead of depending only on the average score diffidence
between inner and outer region of proposals, and treats the
starting/ending boundaries separately to achieve better ro-
bustness to noise. Second, the action classification and action
localization in CleanNet are interdependent and mutually
beneficial, while the counterparts in AutoLoc are indepen-
dent. Moreover, our TAP regressor is specially designed to
address the receptive field issue in the temporal dimension.
All these three differences contribute to the superiority of
the proposed CleanNet, as discussed below in Section 5.2.1.

Besides, most aforementioned WS-TAL methods do not
involve TAP generation because their TAL results are ob-
tained by thresholding. Only AutoLoc [43] and Clean-
Net [64] involve TAP generation. They both rely on a “multi-
scale sliding windows and regression” manner for TAP gen-
eration. However, such a TAP generation pipeline could be
inefficient and inflexible to fully account for the variations
of the action instance durations. Therefore, we extend our
method with a new WS-TAP generation module, which
can provide boundary-based TAPs with flexible temporal
durations.

3 PROPOSED CLEANNET

In this section, we introduce the proposed Contrast-based
Localization EvaluAtioN Network (CleanNet). As illus-
trated in Figure 1, CleanNet composes four major com-
ponents, ie., the feature embedding module, the action
classification module, the action localization module and
the WS-TAP generation module. The input videos are first
processed by the feature embedding module to obtain
snippet-level features. Afterwards, the obtained features
are passed to the action classification module to produce
Snippet-level Classification Predictions (SCPs) and Snippet-
level Attention Predictions (SAPs). After acquiring SCPs and
SAPs, the action localization module refines the temporal
locations of TAPs via a TAP regressor and scores them using
the customized TAP evaluator to obtain sliding-window-
based TAPs. Afterwards, the WS-TAP generation module
generates boundary-based TAPs and fuse them with sliding-
window-based TAPs to obtain the final results.

3.1 Snippet-Level Feature Embedding

The input to the feature embedding module (the brown
rectangle in Figure 1) is untrimmed videos, and the out-
put is the corresponding snippet-level features. Its design
mainly follows UntrimmedNet [53]. After dividing each
video into non-overlapping snippets of the same length (i.e.,
15 frames), temporal features are extracted snippet-after-
snippet, which are referred to as snippet-level features F.
The temporal granularity of 15 video frames (approximately
0.5 second) has been empirically demonstrated to be suffi-
cient for TAL.

The feature embedding backbone is the TSN [54] with
the Inception network architecture and Batch Normaliza-
tion [21]. The pre-trained spatial stream (an RGB input)
and the temporal stream (an optical flow input) are trained
individually. The obtained D-dimensional (D = 1024) out-
puts after the global_pool layers from both streams are
concatenated as one snippet-level feature. Specifically, for
an input video with 7' snippets (157" video frames), the
dimension of the output F is 2D channels by 1" snippets.
The feature of the t-th snippet is denoted as F(t) € R2P*1,

3.2 Action Classification

With F € R2PXT the action classification module (the blue
rectangle in Figure 1) computes both the snippet-level clas-
sification predictions (SCPs) and the snippet-level attention
predictions (SAPs) with two groups of fully connected lay-
ers, respectively. SCPs and SAPs are respectively denoted as
¥ e RV*T and ¢ € R'*T, where N and T are the number of
action categories and the number of snippets, respectively.
Since the structure of our action classification module is
the same as that of UntrimmedNet [53], a straightforward
practice to obtain ¥ and ¢ is to average the outputs of
UntrimmedNet from both spatial and temporal streams.
To make this fusion step trainable, we design our action
classification module as follows,

(1) = (P7(t) + ¥ (1))/2, )
[ ;Eg ] — WCF(t) + b°, 2)
o(t) = w - F(t) + b°, 3)



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, XXXX XXXX 5

Action Proposal P:[x;,,] Illustration of TSN Sampling
Regression Output Tx f; XK
- Tx2x1 Performed at Each Position
S o | convld(2, K) ‘
2 o T
o > TxdxK 1 e[S dxK
E’—' | TSN Sampling |» 2 4 o
Faxt Pi i

> I convld(d, 3)+BN+RelLu |
é " 1‘ dxT | | | IWKSegments
gy &4 (EEEEsEEEEEEEEEE]
g % I conv1d(d, 3)+BN+ReLu ‘ |<— a, —>}—~Anch0r Size
g-_' TdXT IIIITTTTITTT 0 IITTT1T]
- | convld(d, 3)+BN+ReLu | le— T —]

2D x T Features dxT

Fig. 2: The structure of the TAP regressor. Input snippet-
level features are fed into three stacked temporal convolu-
tional layers before a TSN sampling layer, which matches its
receptive field size with the anchor size.

where t = 1,...,T is the snippet index. ¥"(t) € RV*!
and W/ (t) € RV*! are the action classification predictions
of the t-th snippet from the spatial stream and temporal
stream, respectively. W¢ e R?V*2D and b¢ € R2V*! are the
parameters of the classification layer. w® € R and b° are
the parameters of the attention layer. They are initialized as

c | W0 e | b
o 1 o 0T
W= [ wor wer ] b = — ®)

where Wer ¢ RVXD Wer ¢ RVXD war ¢ RIXD and
w € R1*P gtand for the weights of the classification and
attention layers with an RGB input and an optical flow
input, respectively. ber € RV*1 ber € RNXL por and bes
are the corresponding bias parameters. They are initialized
by loading the pre-trained UntrimmedNet models!. After
initialization, our action classification module fuses the two-
stream outputs from the pre-trained UntrimmedNet and
remains trainable for further finetuning. Finally, for each
video with T snippets, we obtain its SCPs (¥ € RV*T) and
SAPs (p € R1*T),

3.3 Action Localization

The main contribution of this paper lies in the design of the
action localization module (the red rectangle in Figure 1).
Unlike existing TAL methods shoehorning the action local-
ization component as a post-processing procedure (typically
by thresholding), our action localization module is embed-
ded into the proposed CleanNet, and it composes a TAP
regressor and a TAP evaluator. Thanks to the new TAP
evaluator, TAPs with higher contrast scores are more likely
to be true action instances (as validated in Section 5.2.1).

3.3.1 TAP Regressor

The goal of the TAP regressor is to regress TAPs from
multi-scale sliding windows to cover the temporal range

1. https:/ / github.com/wanglimin/UntrimmedNet

of each action instance via temporal boundary regression.
Inspired by existing anchor-based 2D bounding box regres-
sion techniques [39], [40], we utilize similar settings in this
1D temporal regression. Specifically, for an anchor with a
temporal duration (i.e., the number of snippets) a,, and a
temporal location 7, its boundary regression target is two
values: r. is relevant to the regressed center and r,, is
relevant to the regressed duration. As shown in Figure 2, the
anchors are generated by dense sampling and the regression
target is predicted by regression layers. Let P denote the
regressed anchor (i.e., one TAP). Its centroid z. and temporal
duration x,, are obtained as

Te = Qy " Tec+ T, (6)
Ty = Gy * €XP(Tay). (7)
The starting and ending boundaries of P are calculated as

Ts = Te — .Tu,/2, 8)
Te = Te + J3711/2- )

For simplicity, we use [z, =] to parameterize P.

However, such a naive adaptation of the spatial bound-
ing box regression algorithm is insufficient due to some
potential receptive field issues. More specifically, the spatial
regression results in [40] are obtained from a 1 x 1 con-
volution layer upon the output of pools in VGG16 [46],
achieving a receptive field of 212, which is large enough
given the input image resolution of 224 x 224. If this
strategy is directly applied to 1D temporal regression, the
receptive field of snippet-level features (F € R?P*T) along
the temporal dimension is merely 1, since they are extracted
snippet-by-snippet. Thus, it is unrealistic to expect reason-
able regression outputs when the size of the receptive field
is much smaller than that of the anchor.

A straightforward remedy might be stacking multiple
temporal convolutional layers upon snippet-level features
F, but the increase of the receptive field size is still limited.
To match the size of the receptive field with the correspond-
ing anchor size, we exploit a sparse temporal sampling
strategy inspired by TSN [54]. In detail, we divide each
anchor into K segments and randomly sample a temporal
location per segment, and then obtain a fixed size (K) repre-
sentation regardless of the anchor size. We term this strategy
as TSN sampling, as illustrated in Figure 2. Subsequently, the
sampled features are fed into another convolutional layer to
predict the regression values.

3.3.2 TAP Evaluator

To supervise the TAP regressor, we need to evaluate the
quality of each regressed TAP. In the fully-supervised TAL
setting where manually labeled temporal boundaries are
available, TAPs can be readily evaluated by comparing them
with ground truth using a metric such as Intersection-over-
Union (IoU). However, in the WS-TAL setting where explicit
temporal boundary annotations are unavailable, the design
of the TAP evaluator is nontrivial.

In CleanNet, we propose a new TAP evaluator to provide
pseudo-supervision based on SCPs of the entire video. The
intuition of exploiting all SCPs is to promote complete TAPs
with correct contents while penalizing fragmented short
ones. The workflow of the TAP evaluator is illustrated in
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Fig. 3: The workflow of the TAP evaluator in CleanNet. To locate action instances of the i-th category in a video, the
inputs to the evaluator are all temporal SCPs corresponding to the i-th action category 1; € R!*T (illustrated as the green
histogram) and an arbitrary TAP P (denoted as the black bounding boxes imposed on the green histogram). The output is

the contrast score s(P) of P, according to Eq. (17).

Figure 3. To locate action instances of the ¢-th category
(z = 1,...,N) in a video, the input to the evaluator is all
temporal SCPs corresponding to the i-th action category,
ie, ¥; € R™*T (the i-th row of W, illustrated as a green
histogram, provided by the action classification module)
and an arbitrary TAP P (illustrated as the bolded black
bounding boxes imposed on the histograms on bottom cor-
ners). To simplify the subscripts of subsequent % variants,
we temporarily drop the subscript of 4, as % in Section 3.3.2.

To account for the temporal contrast information, we
propose the temporal edgeness vector e € R1*7T ag

€ = ("/’max - "/’min) O] [abs( ig:x - irg;(n)]_lv

where © indicates element-wise multiplication, abs(-) and
[-]~! represent the element-wise absolute value and recipro-
cal function, respectively. ¥, € R1*T is derived by sliding
a max pooling window? upon %, and ¥ e R1*7 is the
corresponding index vector of local maximums. Similarly,
Ymin € R and 9idX € R*T are the min pooling values
and indexes, respectively. Intuitively, the temporal edgeness
e represents the likelihood of each snippet being the bound-
ary of an action instance. To distinguish the starts and ends
of action instances (i.e., the rising and falling edges in %), a

sign mask m € R*T ig defined as

(10)

1 if YidX (1) <t < Pl (1),

min max
m(t) = —1  ifYi() >t =), D
0 otherwise, t = 1,...,T.

R*T is obtained as

(12)

Subsequently, the temporal contrast ce
c=mQ@Qe,

which is illustrated as the histogram on the top-right in
Figure 3. Intuitively, the absolute value of c represents the
likelihood of each snippet being the boundary of an action
instance. Positive and negative values indicate the starting
and ending boundaries of action instances, respectively.

For an arbitrary TAP P:[x, .|, we compute its inflated

and deflated regions Pinf:[ginf, ginf] pdef;[pdef pdef] 59

2. The max pooling kernel size is 7. To ensure the output ¥max is
identical in size with the input 4, the stride and padding are 1 and 3,
respectively.

o =g, — /4, =2, 4+ 3,/4,

pdef = oo+ 2, /4, 28t =g, — 2,/4, (13)

which are illustrated as the blue and red bounding boxes
imposed on the histograms on bottom corners in Figure 3,
respectively. Definitions of z. and z,, are included in Sec-
tion 3.3.1.

With ¥, ¢, P, Pi™f and P9 three scores are calculated,
i.e., the action score s,(P) represents the likelihood of P
containing a specific action instance, the starting score s,(P)
reflects the likelihood of P’s start stage coinciding with the
beginning of an action instance, and the ending score s.(P)
indicates the likelihood of P’s end stage coinciding with the
ending of an action instance. They are

5q(P) = avg(ih(zdf : 23°)), (14)
ss(P) = avg(c(al : 29°)) —avg(p (el : z,)),  (15)
se(P) = —avg(c(z2 : 2)) — avg(ph(z. : 2)),  (16)

where avg(-) denotes arithmetic average. Intuitively, the
first term in Eq.(15)/Eq.(16) indicates the average contrast
around the starting/ending phase of P. The second term
in Eq.(15)/Eq.(16) indicates the actionness before/after the
starting/ending boundary of P. A good starting/ending
boundary should satisfy that the average contrast around
it is high/low (i.e., the first term in Eq.(15)/Eq.(16)), while
the actionness before/after it is low (i.e., the second term in
Eq.(15)/Eq.(16)). Therefore, the starting and ending scores
of P are designed as Eq.(15) and Eq.(16), respectively.
The final contrast score s(P) is a weighted summation,

s(P) — 5a(P) + % (54(P) + 5.(P)). 17)

By summing up action scores and edge scores, the contrast
score accounts for both the content and context of P, which
promotes completeness and continuity in TAP evaluation.
We adopt such a scoring scheme because an ideal TAP
should pinpoint the starting and ending temporal bound-
aries of an action instance. If P has a high contrast score, it
indicates that P has correct content, i.e., avg(e(zdef : zd¢f))
is high, as well as it coincides with the start and end stages
of an action instance. For example, our contrast score can
avoid fragmented short TAPs with only correct contents but
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The i-th row of SCPs: ¥; Snippet-level Boundary Values: v

N
Calculating Contextual
Informition

Temporal Contrast: ¢

. T

Position: t

| V() =w(t+1)— w(t—1)+c(t) |

Performed at
— J_J_ J_J_* Each Position

() v(t)

Local
Window

Within the Local Window

Fig. 4: Workflow of the SBVs evaluator. The input is the
SCPs of the n-th action illustrated as a histogram in the
upper left corner, denoted as 9. € R'T. The output
SBVs (b € R1*7T) is illustrated as the histogram in the upper
right corner. At each temporal position ¢, b(t) is calculated
based on data within the local window (illustrated as the
red bounding box superimposed on the histograms). As
the local window slides through all T' temporal positions,
SBVs of shape 1 x T' (T being the number of snippets) are
computed.

poor boundaries. Moreover, Section 5.2.1 also validates the
contributions of each term in Eq. (17) and all terms in it, i.e.,
sq4(P), s5(P), and s.(P), are indispensable components of
the proposed contrast score s(P).

3.4 WS-TAP Generation

The main extension of our method compared with its con-
ference version [64] lies in the WS-TAP generation module.
Similar to the anchor-based 2D detection methods [40],
the TAP regressor in the action localization module adopts
multi-scale sliding windows with regression for TAP gen-
eration. However, sliding-window based TAPs generated
from such a pipeline could be inflexible to fully account for
the variations of the action instance durations. To solve this
problem, we proposed a WS-TAP generation module based
on the temporal contrast c in the TAP evaluator. It accommo-
dates flexible action durations and provides more accurate
temporal boundaries by generating boundary-based TAPs.

The boundary-based TAPs are generated in two steps.
First, snippet-level boundary values (SBVs) are derived as
illustrated in Figure 4. Second, potential starting and end-
ing boundaries are formulated as boundary proposals and
subsequently selected and connected to generate boundary-
based TAPs, as illustrated in Figure 5. To differentiate
sliding-window-based TAPs set (obtained by TAP regressor
in Section 3.3.1) and the boundary-based TAPs set, we term
them as P = {P%} and P* = {P"}, respectively.

3.4.1 SBVs Evaluator

The objective of the SBVs evaluator is to reveal the likeli-
hood of each snippet being a starting or ending boundary.
Based on these likelihood values, potential starting and
ending boundaries are subsequently located.

The workflow of the SBVs evaluator is illustrated in Fig-
ure 4. When locating the i-th action category (¢ = 1,..., N)
in an untrimmed video, the input of the SBVs evaluator is
SCPs corresponding to that action, i.e., ; € R**7 (the i-th
row of ¥, illustrated as a green histogram in the upper left
corner). To simplify the subscripts of subsequent % variants,
we temporarily drop the subscript of 9; as % in this section.

1
Formulating Boundary Proposals

Time
SBVs: ve R

Potential Starting Location s

1
I
I
1
1
I
1
Potential Ending Location == |
1
1
1
I
1
1
I

| .
A [y | Starting Proposal e—e
o—o Ending Proposal e=—e
O—
— —T, Time
S G .
A e — Selection by NMS !
I
|
oo/ I
@9 O | G H
i ! o—e | ®%gp o—o I Ime

Boundary-basgd TAPS e=—e

Connecting boundaries to
obtain boundary-based TAPs

&

Fig. 5: The workflow of the boundary-based TAP generator.
Taking SBVs (v € R *T) as the input, the first step is formu-
lating boundary proposals according to Eq. (20) (red dashed
box). Subsequently, locating staring and ending boundaries
can be reformulated as selecting boundary proposals. As
shown in the blue dashed box, boundary proposals are
selected via NMS and boundary-based TAPs are finally
obtained by connecting the center locations of starting and
ending proposals. All boundary-based TAPs of a specific
ending proposal are illustrated on the bottom.

To exploit local information, we propose the local bound-
ary vector b(t) € R1*T as a central difference to capture the
changes in SCPs:

b(t) =9t +1)—p(t—1), t=1,....,T. (18

To further leverage the temporal contextual information,
the temporal contrast vector ¢ € R'*T proposed in Eq. (12)
is leveraged. Afterwards, we proceed to combine the local
and contextual information by snippet-wise addition of b
and c as v = b + ¢, where v € R'*T denotes the final
SBVs of the target action category.

3.4.2 Boundary-based TAP Generator

Taking SBVs (v € R*T) as the input, the proposed WS-TAP
generation method can provide a set of P’ (i.e., P’) with
flexible durations and precise boundaries with a “select-
and-connect” strategy as shown in Figure 5.

The key is the strategy of locating starting and ending
boundaries of action instances without temporal annota-
tions for training. Based on SBVs, we transform the localiza-
tion of boundaries to a proposal selection task. Specifically,
we formulate a starting boundary as a starting proposal as

P* = [z, x4, ¢°],

sty

(19)

where zg, x§ and ¢’ are the indexes of the starting snippet,
the index of the ending snippet and the confidence score
of P?, respectively. Similarly, an ending proposal can be
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denoted as P¢ = [z§, ¢y, ¢?]. All the starting and ending
proposals are collectively termed boundary proposals.

Unlike action instances which are often dramatically
different in temporal durations, we empirically observe
that the temporal durations of the action boundaries are
concentrated, i.e., |z, — 5| ~ w, where w is a constant rep-
resenting the average duration (in “number-of-snippets”) of
such boundary proposals. We fix w = 3 since only the action
scores within a three-snippet window are considered when
calculating local information in Eq. (19).

The confidence scores of the boundary proposals are
assigned according to SBVs (v € R'*T). Specifically, for the
t-th snippet, if its SBV is positive (i.e., v(t) > 0), it will be
regarded as a potential starting location and the confidence
score of the corresponding starting proposal (i.e., ¢®) will
be assigned as v(t). If v(t) < 0, the ¢-th snippet will be
regarded as a potential ending location and the confidence
score of the corresponding ending proposal (i.e., ¢®) will be
assigned as —v(t). As a result, for the ¢-th snippet, its staring
proposal P? or ending proposal P¢ is defined as,

=at=t—1, ¢ =v(t),
c® = —v(t).

s
‘rst

Tog = Teg =t+1, (20)

The generation of boundary proposals is illustrated in Fig-
ure 5 within the dashed red box.

After the boundaries are formulated as proposals with
confidence scores, the localization of boundaries is trans-
formed to a proposal selection task, which is performed with
the standard Non-Maximum Suppression (NMS) algorithm.
After the boundary proposal selection, P® is generated by
connecting the selected starting and ending proposals, as
shown in Figure 5 within the dashed blue box. Finally, the
confidence scores of TAPs in P? are also obtained leveraging
the contrast score proposed in Section 3.3.2.

Note that our connecting step is the same as that in
BSN [30]. However, BSN is fully supervised, and it can di-
rectly obtain starting and ending locations through training.
Due to lack of temporal annotations, we cannot directly lo-
cate the starting and ending locations. This is why we trans-
form the localization of boundaries to a proposal selection
task. We argue that the greatest challenge is how to obtain
the starting and ending locations with weak supervision,
instead of how to connect them.

3.4.3 TAP Fusion

As claimed in [13], the TAPs generated by sliding windows
and actionness-score-grouping methods are complementary.
Similarly, P* may miss real action instances if the boundaries
are incorrectly located. Although P* is not flexible enough,
it can cover the whole input video. This inspires us to fur-
ther fuse P* with P’ to get the final TAP set P. The simplest
fusion practice is the direct set union, ie, P = P* u P?,
which is also discussed in our ablation study.

The goal of fusion is to exploit P to supplement P’ for
better coverage. We use NMS with two overlap thresholds to
achieve this goal. Specifically, denoting o as the NMS over-
lap threshold, VP* e P*, it will be suppressed under either
condition: (1) 3P € P¥ s(P) > s(P¥) & IoU(P“,P) > «;
(2) 3P € P, 5(P) > s(P") & IoU(P",P) > ic. In this
way, the final set P keeps all boundary-based proposals

and meanwhile contains sliding-window-based proposals to
supplement P°.

4 TRAINING CLEANNET

Having introduced the architecture of CleanNet, this section
will discuss its training process. The action classification
module is trained by minimizing the cross-entropy loss
between the video-level prediction and the video-level cat-
egorical label, while the TAP regressor within the action
localization module are optimized by maximizing the con-
trast scores of TAPs. Specifically, we first prove that the
proposed TAP evaluator is differentiable, which guarantees
the contrast score can be leveraged to train the regression
model through the regular back-propagation algorithm. Af-
terwards, we describe the training scheme of the action
localization and classification modules, and further present
a joint finetuning process.

4.1 Back-propagation of the TAP Evaluator

Subsequently, we will prove that the proposed TAP eval-
uator is differentiable w.r.t. the input boundaries, i.e., the
contrast score s(P) of an TAP P in Eq. (17) is differentiable
w.rt. its starting and ending boundaries x;, and z.. To
achieve this goal, we first define a score function as

2 Myt

)
T2 — T1

8o(T1,22,A) = (21)
where [z1,x2] are the boundaries of a given TAP, and
A € RYT i a snippet-level score. Intuitively, s, (1, 72, X)
is the average score of given A from z; to zo. Afterwards,
its gradient w.r.t. the starting boundary z; is derived as

_ —A(l‘l)(l’g — .171 + SIZ)\ (22)
( Ty — x1)?

= A(x1) + so(1, 0, A)

a (z2 — 1)

(980(1'1,1'2,A)

(3.%‘1

Similarly, we can derivate the gradient w.r.t. the ending
boundary z; as

0so(x1,22,A)  A(x2) — So(x1, T2, )

= . 23

('}xg (.’EQ — xl) ( )

If the snippet-level score A € R is 9;, z; = zd¢f
def

and zy = z¥, s, will be s, in Eq. (14). Therefore, s, is
differentiable w.r.t. z9¢f and z9¢f and the gradients can be
calculated following Eq. (22- 23) Similarly, s, and s. are
differentiable w.r.t. their input boundaries and the gradients
can also be calculated following Eq. (22-23). Finally, the
whole contrast score s(P) is differentiable w.r.t. z; and z..
Therefore, the pseudo-supervision provided by the contrast
score can be leveraged to train the TAP regressor through
the regular back-propagation algorithm.

4.2 Training of Action Localization and Classification

As shown in Figure 1, there are two losses, i.e., the regression
loss and the classification loss, which are responsible for the
two outputs of CleanNet, i.e., action localization and action
classification, respectively.
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Training of Action Localization. To train the action local-
ization module, we first select “positive” TAPs according
to their contrast scores assigned by the TAP evaluator. We
adopt a similar proposal selection scheme as described in
AutoLoc [43]. Specifically, when locating an action instance
of the i-th category, if the i-th category prediction of the
t-th snippet 9;(¢) or its attention prediction ¢(¢) is lower
than their corresponding pre-defined thresholds, all anchors
centered at this snippet will be discarded. Afterwards, the
remaining anchors are regressed to be sliding-window-
based TAPs. An TAP P will be selected to be “positive”, if its
contrast score s(P) is higher than 0.5. The set of all selected
“positive” TAPs is denoted as PP. With PP, the regression
loss Lyeg is defined as

D7 s (24)

Peppr

reg ‘]P)p‘
where | -
elements).
Training of Action Classification. The training process
of the action classification module is the same as that of
UntrimmedNet [53]. The classification loss is defined as

| denotes the cardinality of a set (number of

N

Lcls = Z

i=1

—y()log(p(2)), (25)

where p(i) and y(7) are the video-level prediction and the
label of the i-th category. p € RV*! is calculated as

= > et)w(t), (26)

where ¢ is the attention weights of T snippets normalized
by a softmax layer as

o) = SPe)
P = ST oplel)

Therefore, L is the cross-entropy loss between the video-
level categorical label y and video-level categorical pre-
diction p. Intuitively, p is the weighted summation of all
snippet-level predictions in the video, regardless of whether
a snippet is background or not. In the case of videos with
multiple labels, y will be normalized to have a unit £;-norm
before training.

If the action classification module is initialized using
pre-trained UntrimmedNet [53] as described in Section 3.2,
we will skip the minimization of Lqs. And the finetuning
of the action classification module is achieved by the joint
finetuning process below.

Joint Finetuning Process. There is a drawback of training
the action classification module by itself. All snippets are en-
gaged in training regardless of whether they are background
or not, which will inevitably introduce noise to the training
procedure of action classification. Here we propose a simple
yet effective way to further finetune the action classification
module together with the action localization module (Cs
in Table 1). First, we find all snippet indexes covered by
positive TAPs and denote this index set as S. Intuitively, S
is the set of all positive snippets. Afterwards, we propose a
joint loss (Lj) to focus on the located action (by minimizing

(27)

L,) and suppress background (by minimizing L;). They are
defined as

Ly =L, + Ly, (28)
N
_Z (i)log(pa(i)), (9)
Nz=1
= > —y(i)log(1 — py(7)), (30)

i=1

where the video-level predictions of action and background
(i.e., p, and py) are defined as

= S o(1)%(), p ‘S| ST ().

teS t¢sS

1)

@ is the attention weights normalized by a softmax layer
across snippets in S, obtained by

S exp(e(t)
o0 = 5 explp(®)

Different from p in Eq. (26), p, avoids the distrac-
tion from the irrelevant snippets because S contains only
positive snippets. Therefore, minimizing L, can make the
classification module focus on the located action. On the
contrary, p, involves only snippets that are not contained
by S, which should be regarded as background snippets
during the training of action classification. By minimizing
Ly, background suppression can be achieved via recogniz-
ing background snippets as not the target action class.

The similar idea of background suppression is explored
in [26], [35]. Different from these methods, our method
uses localization results (ie., S) to differentiate video-
level action/background predictions (noted as p, and py),
while [26] and [35] rely on snippet-level attentions. There-
fore, this finetuning process actually leverages the localiza-
tion results to finetune the classification module, making
the action classification and localization benefit each other.
Besides, compared with [26] and [35], no additional back-
ground class is introduced in our method.

(32)

5 EXPERIMENTS

In this section, we evaluate the TAL performance of the
proposed CleanNet, and carry out detailed ablation studies
to explore the performance contribution of each component
in CleanNet. Meanwhile, we compare our method with
existing WS-TAL methods and recent fully-supervised TAL
methods on three standard benchmarks.

5.1 Experimental Setting

Evaluation Datasets. The THUMOS14 [23] dataset contains
413 untrimmed videos of 20 actions in the temporal action
localization (TAL) task, where 200 untrimmed videos form
the validation set and 213 untrimmed videos form the
testing set. Each video contains at least one action. The val-
idation and testing sets are leveraged to train and evaluate
our CleanNet, respectively. The training set of THUMOS14
is not related to the TAL task.

ActivityNet v1.2 & v1.3 [10] covers 100 & 200 activity
categories. The training set includes 4,819 & 9,997 videos
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TABLE 1: Five main components of CleanNet divided for
detailed ablation studies.

Notation | Explanation
C1 Training the TAP regressor.
Co Using s, to evaluate TAPs.
Cs3 Using ss and s. to evaluate TAPs.
Cy Using TSN sampling strategy.
Cs Joint finetuning of action classification.

TABLE 2: TAL performance comparison of our method and
its variants with different combination of components on
the THUMOSI14 testing set, at the IoU threshold 0.5.

Method Cq Co Cs Cy Cs mAP(%)
UntrimmedNet [53] Baseline 15.4
Plain-Model v v 21.6
Actioness-Only v v v 1.2
Edgeness-Only v v v 11.4
CleanNet-Simple v v v 229
CleanNet-T v v v v 23.4
CleanNet-J v v v v 24.0
CleanNet-SW v v v v v 24.3

and the validation set includes 2, 383 & 4, 998 videos , which
are used in our training and evaluation, respectively.
Evaluation Metrics. For the TAP generation task, Aver-
age Recall (AR) over multiple IoU thresholds at Average
Number of proposals (AN), i.e., AR@AN, is adopted as the
evaluation metric. Following the conventional setting, we
use IoU thresholds set [0.5:0.05:1.0] on THUMOS14 and
[0.5:0.05:0.95] on ActivityNet. For example, AR@100 means
average recall with 100 proposals. On ActivityNet, the area
under the AR-vs.-AN curve (AUC) is also used as a metric,
with the AN ranging from 0 to 100. For the TAL task, mean
Average Precision (mAP) at multiple IoU thresholds, i.e.,
mAP@IoU, is adopted as the evaluation metric, where Av-
erage Precision (AP) is calculated category-by-category. loU
thresholds are selected as [0.3:0.1:0.7] and [0.5:0.05:0.95] on
THUMOS14 and ActivityNet, respectively.
Implementation details. We implement our CleanNet using
PyTorch [37] on one NVIDIA GeForce GTX TITAN Xp
GPU. We adopt stochastic gradient descent (SGD) solver
for optimization. The training step composes two stages,
the first/second stage minimizes L./ Ly, respectively. Both
stages are with the initial learning rate of 0.0001 and divided
by 10 after every 200 batches (one batch contains one whole
untrimmed video). Following [43], the anchor sizes are set
as 1, 2, 4, 8, 16, 32 snippets for THUMOS14 and 16, 32, 64,
128, 256, 512 snippets for ActivityNet, respectively. During
testing for TAL task, NMS with IoU threshold o = 0.4 is
used to remove duplicated TAPs. For videos with multiple
labels, we perform action localization to all actions with a
classification score higher than 0.1. It takes 1/12/18 hours
to train the models on THUMOS14/ ActivityNet v1.2/v1.3.
For the testing process, we leverage multithreaded program-
ming to speed it up. Specifically, it takes around 6/42/62
minutes to test the models on THUMOS14/ActivityNet
v1.2/v1.3.

5.2 Ablation Study

We present multiple ablation studies to explore the perfor-
mance contribution of the two newly proposed modules, i.e.,

TABLE 3: TAL mAP on the THUMOS14 testing set, at the
IoU threshold 0.5 with different pooling kernel sizes.

Pooling Kernel Size
Method 57 9 11 13
Plain-Model | 21.1 21.6 219 21.8 213
CleanNet-SW | 23.2 243 242 239 230

the action localization module and the WS-TAP generation
module.

5.2.1 Ablation Study on Action Localization Module

To explore the performance contribution of each component
in action localization module, we first divide it into five
components as listed in Table 1. Ablated variants with
different combination of these five components are eval-
uated on THUMOS14, together with the baseline method
UntrimmedNet [53], as presented in Table 2. Noting that to
isolate the contribution of action localization module, the
results in this subsection are obtained without the WS-TAP
generation module.

Using Proposal Evaluator without Training TAP Regres-
sor. Note that our TAP evaluator can assign contrast scores
to an arbitrary TAP no matter whether it is regressed by
the regressor or not. Therefore, with only the TAP evalu-
ator in action localization, our CleanNet without training
the TAP regressor can still function well. In this way, all
“TAPs sampled via sliding windows without regression”
(i.e., anchors) are directly scored by the TAP evaluator. The
rest steps remain the same. This ablated variant is denoted
as “Plain-Model” in Table 2, since there is no trainable
parameter for action localization. With such settings, action
localization degenerates as a post-processing procedure and
achieves a fair comparison with the thresholding component
in UntrimmedNet [53]. The proposed TAP evaluator offers
substantial improvement over UntrimmedNet [53] as the
mAP is boosted from 15.4% to 21.6% at the IoU threshold
0.5. This ablation study validates the efficacy of the contrast
scores provided by the TAP evaluator, which is responsible
for the major improvement of our TAL performance.
Variants of Proposal Scores. As alternatives to the contrast
score s(P) defined in Eq. (17), two ablated versions are
studied, termed “Actioness-Only” and “Edgeness-Only” in
Table 2. The Actioness-Only replaces Eq. (17) with action
score (C2) only, i.e., s(P) = s,(P); while the Edgeness-Only
replaces Eq. (17) with starting and ending scores (C3) only,
ie, s(P) = (ss(P) + s.(P))/2.

As shown in Table 2, without s,(P) and s.(P),
Actioness-Only suffers from such dramatic performance
degradation that it performs significantly worse than
UntrimmedNet [53]. The main reason of such severe degra-
dation is that, s,(P) accounts for only content and ignores
completeness, which results in assigning high scores to
TAPs with poor boundaries. Considering only the bound-
aries, the performance of Edgeness-Only is marginally better
than Actioness-Only, but the degradation is still obvious.
This is because without considering the content (the action
score), Edgeness-Only is likely to be more susceptible to
fluctuations of SCPs (e.g., due to noises). Comparing these
two variants with others (both C5 and Cj3 are enabled), we
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TABLE 4: TAL performance comparison between
UntrimmedNet [53] and CleanNet-Simple on THUMOS14
test set, with the same feature embedding and SCPs.

TABLE 6: AR@AN= 50,100,200 performance comparison
on THUMOS14 test set. Same ablated versions with different
backbone networks are listed for comparison.

mAP@IoU
0.1 0.2 0.3 0.4 0.5 06 0.7
436 375 298 228 154 83 42
478 419 363 296 229 138 54

Method

UntrimmedNet [53]
CleanNet-Simple

TABLE 5: TAL performance comparison between training
with and without the pre-trained classification modules.

Initialization Methods 03 0. 4mAIB€.12510U 06 07
W/ Pre-trained | CleanNet-Simple | 36.3 29.6 229 138 53
W/o Pre-trained | CleanNet-Simple | 36.7 29.8 230 13.6 52
W/ Pre-trained CleanNet-SW 381 313 243 142 6.5
W /o Pre-trained CleanNet-SW 383 313 244 141 65

provide performance advantage due to each term in Eq. (17),
confirming s,(P), s5(P), and s.(P) are all indispensable
components of the contrast score s(P).

TSN Sampling and Joint Training. With components C},
Cy and Cj, the ablated version “CleanNet-Simple” in Ta-
ble 2 has already achieved state-of-the-art performance,
as presented in Table 9. This solidly validates our TAP
evaluator contributes the most to our superior performance.
Besides, enabling the TSN sampling (“CleanNet-T”) or the
joint finetuning of action classification (“CleanNet-]”) can
lead to further improvements over CleanNet-Simple. The
comparison of CleanNet-T, CleanNet-] and CleanNet-SW
shows that the contributions of Cy and C; are compatible.
Finally, with all five components enabled, CleanNet-SW
achieves the best action localization performance among all
variants.

Sensitivity of Hyper-parameter Kernel Size. As shown in
Table 2, the untrained Plain-Model is responsible for 70%
performance gains over the baseline method Untrimmed-
Net [53]. Moreover, the Plain-Model provides a lower per-
formance bound of CleanNet regardless of training configu-
ration of the hyper-parameters, such as “positive threshold”,
learning rate, number of epochs, etc. However, the only
parameter that affects the Plain-Model performance is the
“pooling kernel size” when computing Eq. (10), and thus we
present additional sensitivity tests in Table 3. Our method
can work well under different pooling kernel sizes in gen-
eral, which demonstrates the robustness of our method.
Overhead Analyses. The “nearest neighbor” of our action
localization module is AutoLoc [43]. Compared with Au-
toLoc, the extra computation comes from the calculation
of the contrast score and the classification model (FLOPs=
T x 418K, where T is the number of snippets in the input
video.). The former is responsible for the majority of the
computational overhead since each proposal needs to be
scored individually, while the latter only operates once per
video. Specifically, AutoLoc computes mean values three
times per proposal while CleanNet computes five times.
For reference, taking UntrimmedNet [53] as the baseline,
the overhead brought by the additional regression layers of
AutoLocis T' x 890K FLOPs.

Comparison with Thresholding-based Methods. To fur-
ther validate the advantage of our action localization over
thresholding-based counterparts, we compare our method

Method | P* P® Fusion | @50 @100 @200
- SW v 17.87 2484 32.82
% BP v 2229 2949 -
5 | SW+BP v v 19.39 2626 34.02
Ours v v v 24.09 30.28 36.71
SW v 1826 25.82 3445
a BP v 23.37  30.32 -
£ | SW+BP v v 18.89 2622  34.62
Ours v v v 23.17 30.88 37.09

0.40

g
o

0.35 E——
. BP
©0.8 — swi
= a s Ours
g 0.30 §
& 0.25 506
) g
©0.20 S
g 04
<015 T
£0.2
0.10 e
0.0
0t 10° %0 02 o0a o6 08 10
Average number of proposals loU

(@) (b)
Fig. 6: AR-vs.-AN and recall@AN=100-vs.-IoU comparison
on THUMOS14 with UNet backbone.

with thresholding-based methods. Specially, we highlight
the comparison between UntrimmedNet [53] and CleanNet-
Simple under the UNet backbone. Because they both share
the same feature embedding and action classification mod-
ules, such comparison could reveal the effectiveness of our
proposed action localization. AutoLoc [43] is also visualized
for reference.

Quantitatively, our method significantly outperforms
UntrimmedNet [53] as shown in Table 4. Besides, we also
present additional qualitative examples on THUMOS14 in
Figure 7 to demonstrate our method can promote the
completeness of TAPs. Note that the localization results of
UntrimmedNet [53] and CleanNet-Simple are achieved with
shared SCPs of the action.

Some challenging cases are illustrated in Figure 7 with
a false negative error (Figure 7(a), i.e., missing action in-
stances) and a false positive error (Figure 7(b), i.e., produc-
ing spurious action instances). Such errors are more promi-
nent for UntrimmedNet [53], which could be caused by
the difficulty of adjusting proper localization thresholds in
UntrimmedNet. Other problems such as over-segmentation
(i.e., breaking one action instance into multiple ones) and
under-segmentation (i.e., merging multiple instances into
one segment) are also generally more severe for Untrimmed-
Net [53], as illustrated in Figure 7(c) and Figure 7(d), respec-
tively. We speculate that such a thresholding-based method
only accounts for the content of TAPs but ignores specific
treatment of proposal boundaries and context information.

Compared with thresholding-based methods, methods
not relying on thresholding for localization can better han-
dle these cases. Facilitated by the proposed TAP evaluator,
our method can select TAPs considering both the content
and the completeness, which could be the justification for
its better performances.
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(d) An example from action Diving

Fig. 7: Qualitative TAL examples of CleanNet-Simple, UntrimmedNet [53], AutoLoc [43] and CleanNet-SW on the
THUMOS14 testing set. The ground truth temporal locations and predicted ones are illustrated with blue and green
bars, respectively. Both the corresponding temporal contrast and snippet-level classification predictions (SCPs) of the target
action are included. Specifically, for the temporal contrast, a two-tone color scheme is used, with blue and red colors
representing positive and negative values, respectively. CleanNet-Simple and UntrimmedNet share the same SCPs. (a)
An example video with false negative errors. (b) An example video with false positive errors. (c) An example of over-
segmentation (i.e., breaking one instance into multiple segments). (d) An example of under-segmentation (i.e., merging
multiple instances into one segment). Compared with the thresholding-based method UntrimmedNet, methods not relying
on thresholding for localization can better handle these challenging cases.
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TABLE 7: TAL: mAP@IoU comparison on THUMOS14 test
set. Same methods with different backbone networks are
listed for comparison.

mAP@IoU

Method 03 04 05 06 07|4%8
£ | CleanNet-SW | 38.1 313 243 142 65 | 229
Z | CleanNet-BP | 368 314 245 149 6.6 | 22.9
2 | CleanNet | 382 315 245 150 7.4 | 23.3
A | CleanNet-SW | 43.6 338 250 142 7.0 | 251
8 | CleanNet-BP | 43.6 375 27.6 180 7.6 | 267

CleanNet | 444 363 271 173 73 | 265

TABLE 8: Differences among the variants of our method.

. TAPs Post-processin .
Variants Task pv  pb pw P ) & Fusion
SW TAP Gen. v - - -
CleanNet-SW | WS-TAL v NMS - -
BP TAP Gen. v - - -
CleanNet-BP WS-TAL v - Single -
SW+BP TAP Gen. v v - - -
Ours TAP Gen. v v - - v
CleanNet WS-TAL v v - Single v

Training without Pre-trained Classification Modules.
For direct comparison with thresholding-based methods,
we initialized classification modules using pre-trained
UntrimmedNet [53], to achieve shared SCPs (as described
in Section 3.2). Special initialization is required because
the TAP evaluator needs reasonable SCPs provided by the
action classification module to score TAPs. Otherwise, min-
imizing Eq. (24) (i.e., maximizing average contrast scores
of positive TAPs) will become meaningless and S cannot
filter noisy snippets as expected. Therefore, the parameters
of action localization and classification modules cannot be
jointly trained from scratch.

Without using pre-trained parameters, the action clas-
sification module is trained by minimizing L. using SGD
solver with initial learning rate of 0.0001. The learning rate is
divided by 10 after every 20 epochs. After 60 epochs, param-
eters of the action classification module is learned and the
training of action localization and joint finetuning process
stay the same as introduced before. As shown in Table 5, no
obvious final performance difference is observed between
the training with and without the pre-trained classification
modules.

5.2.2 Ablation Study on WS-TAP Generation Module

The contribution of the WS-TAP generation module is re-
flected on both the TAP generation and WS-TAL tasks. We
evaluate the effect of boundary-based TAPs on both tasks.
TAP Generation Task. We present the ablation study to
compare the WS-TAP generation module with the sliding-
window-based TAPs (P") provided by the TAP regressor
with the TAP generation task. To isolate the contributions
of the boundary-based TAPs (P’) generated in Section 3.4.2
and the TAP fusion scheme in Section 3.4.3, ablated variants
of our WS-TAP generator are evaluated.

The AR@AN comparison on THUMOS14 test set is
summarized in Table 6 and visualized in Figure 6(a). With

TABLE 9: TAL performance comparison on the THUMOS14
testing set. Fully-supervised methods have access to both
video-level category labels and temporal annotations during
training; while the weakly-supervised methods only have
video-level category labels.

mAP(%)@loU

Method 03 04 05 06 07
S Wang ef al. [52] 146 121 85 47 15
E S-CNN [44] 363 287 19.0 103 5.3
3] CDC [42] 40.1 294 233 131 7.9
& Gao et al. [14] 501 413 310 191 99
‘f; SSN [63] 519 41.0 298 19.6 107
:5‘ Chao et al. [4] 532 485 428 338 208
= BSN [30] 535 450 369 284 200

Hide-and-Seek [47] | 19.5 127 6.8 - -
UntrimmedNet [53] | 29.8 228 154 8.3 4.2

2 STPN [34] 311 235 16.2 9.8 5.1
E W-TALC [38] 320 260 188 109 6.2
5 AutoLoc [43] 358 290 212 134 58
53 CleanNet-Simple 363 296 229 138 53
”-; CleanNet 38.2 315 245 15.0 7.4
= STPN (I3D) [34] 355 258 169 99 4.3
g W-TALC (I3D) [38] 40.1 311 228 145 7.6
CMCS (I3D) [31] 412 321 231 150 7.0
MAAN (I3D) [61] 411 306 203 120 6.9
CleanNet (I3D) 444 363 271 173 7.3

only P¥ as the baseline performance, both P and the fusion
scheme contributes to the TAP generation performance. Be-
sides, Recall@RAN=100-vs.-loU performance is illustrated in
Figure 6(b), which implies the quality (i.e., temporal overlap
with ground truth) of the generated proposals. Our pro-
posed method achieves significant higher Recall@AN=100
than other variants through a wide IoU range 0.1 ~ 0.7.
WS-TAL Task. The contributions of boundary-based TAP
for the WS-TAL task are compared in Table 7. Different
from the TAP generation task, only a single TAP with the
highest confidence score is kept at each temporal position
(denoted as “Single” in Table 8). The ablated versions with
only boundary-based TAPs are denoted as CleanNet-BP.

CleanNet-BP achieves better mAP than CleanNet-SW
when IoU threshold is larger, which verifies our assump-
tions that boundary-based TAPs do generate high quality
proposals, but not enough of them to cover all action in-
stances, especially with low IoU thresholds. By combining
them with the fusion scheme proposed in Section 3.4.3,
the TAL performance is further improved compared with
CleanNet-SW, which is our complete version for TAL task
in Table 9 and Table 12. Evaluated on different tasks, the
variants of our method have similar names in Table 6 and 7.
For clarity, the differences among these similar variants are
summarized in Table 8.

5.3 Performance Comparison with State-of-the-Arts

Experiment on THUMOS14 on TAL task. As summarized
in Table 9, our method with a UNet backbone outperforms
all the compared WS-TAL methods on the THUMOS14
testing set. The performance advantage of CleanNet is
especially significant compared with thresholding-based
methods, e.g., Hide-and-Seek [47], UntrimmedNet [53],
STPN [34], and W-TALC [38], which implies the superi-
ority of the TAP regression and evaluation scheme over
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TABLE 10: AR@AN performance comparison on THU-
MOS14 test set. Methods with full supervision use both
video-level category labels and temporal annotations during
training; while our method only have access to video-level
category labels.

Method Supervision | @50 @100 @200
TAG [63] Full 18.55 29.00 39.61
TURN [15] Full 21.86 31.89 43.02
CTAP [13] Full 3249 4261 5197
BSN+NMS [30] Full 3541 4355 52.23
Ours Weak 2409 3028 36.71
Ours (I3D) Weak 23.17 30.88 37.09

TABLE 11: AUC and AR@100 comparisons on the validation
set of ActivityNet v1.3. Our method is the only weakly
supervised one.

TAG TURN CTAP BSN

Method ‘ 163] [15] [13] [30] ‘ Ours
AUC (val) | 53.02 53.92 65.72 66.17 | 44.32
AR@100 63.52  63.46 73.17 74.16 | 50.35

thresholding. Moreover, CleanNet-Simple can be regarded
as a direct comparison to AutoLoc [43], since it differs
from AutoLoc only in TAP evaluator. Thanks to all the
distinct designs (see Section 2.4 for details) of CleanNet, it
outperforms AutoLoc at all IoU thresholds. Surprisingly, our
method even achieves comparable performances with some
fully-supervised TAL methods.

As shown in the bottom part of Table 9, our method with

the I3D backbone [3] pretrained on Kinetics (Ours-I3D) also
achieves state-of-the-art performance, compared with other
WS-TAL methods with the same I3D backbone. This clearly
manifests that our method is not tied to a specific backbone.
Experiment on ActivityNet v1.2 & v1.3 on TAL task. As
the comparison results on ActivityNet v1.2 & v1.3 in Ta-
ble 12 shown , our methods outperforms all other WS-TAL
methods on average mAP at IoU thresholds 0.5:0.05:0.95
using I3D backbone. Taking W-TALC [38] to represent
thresholding-based methods, it can achieve fair perfor-
mance when the IoU threshold is lower. Owing to the low
noise ratio of ActivityNet v1.2 validation set, which has only
an average of 1.5 action instances and 34.6% background
per video. In contrast, THUMOS14 has an average of 15.4
action instances and 71.4% background per video. However,
our method keeps the highest performance at all IoU thresh-
olds, which verifies that our method can select and keep the
TAPs having larger overlaps with ground truth temporal
action instances.
Experiment on TAP Generation task. As shown in Table 10,
on the test set of THUMOS14, our method achieves com-
petitive temporal proposal generation results against fully
supervised approaches. As the only weakly supervised one,
our method achieves competitive AR at small AN, indicat-
ing that our top few (within the small AN values) proposals
are comparable in quality with those generated by fully
supervised approaches. But our AR saturates faster as AN
increases and there is a large performance gap between our
method and fully supervised ones at AN=200, especially
with non-sliding-window-based methods [13], [30], [63].

~ lab,

= 1Y = 9177 2 g g g 22
2

Real Action I
Phase |

Preparatory |
Phase |

Follow-up
Phase

Fig. 8: Action instances with ambiguous boundaries, such as
the run-up as the preparatory phase. With the immediately
preceding preparatory phase and the subsequent follow-up
phase, it is challenging for algorithms to precisely locate
the real action phase, especially with weakly supervised
methods. The above five samples demonstrate such cases,
where our proposed method misclassifies these transitional
phases as part of the real action instance. The dashed red
lines indicate the real temporal action boundaries provided
by the groundtruth.

As summarized in Table 11, on the validation set of
ActivityNet v1.3, our method also achieves competitive
TAP generation performance against fully supervised ap-
proaches. But the performance gaps between our method
and fully supervised methods are larger than those on the
THUMOS14 test set.

5.4 Strengths and Limitations.

For strengths, the experimental results show that our
method (1) is capable of locating the action instances in
untrimmed videos with only video-level labels during train-
ing, (2) is not tied to specific feature backbone, (3) has a more
flexible localization module compared with thresholding-
based methods, (4) can even achieve comparable perfor-
mances with some fully-supervised methods. (5) the action
localization module and action classification module can be
jointly finetuned to achieve better performance. Besides, (6)
we provide a WS-TAP generation method shows efficiency
on both WS-TAL and TAP generation tasks.

For limitations, the first limitation of the CleanNet is
that the parameters of action localization and classification
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TABLE 12: TAL performance comparison on ActivityNet v1.2 and v1.3 validation set, in terms of mAP at IoU thresholds
[0.5:0.05 : 0.95]. Our result is also comparable to fully-supervised models.

. mAP(%)@loU
Supervision Method 1213 | 05 055 06 065 07 075 08 08 09 095 | V8

Full SSN [63] v1.2 413 388 359 329 304 270 222 182 132 61 26.6
Full SSN [63] v1.3 39.1 - - - - 23.5 - - - 5.5 24.0
Weak UntrimmedNet [53] v1.2 7.4 6.1 52 45 3.9 3.2 2.5 1.8 1.2 0.7 3.6
Weak AutoLoc [43] v1.2 273 249 225 199 175 151 130 100 6.8 3.3 16.0
Weak TSM [59] v1.2 283 260 236 212 189 170 140 111 75 35 | 171
Weak W-TALC [38] v1.2 370 335 304 257 146 127 100 7.0 42 1.5 18.0
Weak CMCS [31] v1.2 36.8 - - - - 22.0 - - - 5.6 | 224
Weak CleanNet v1.2 40.5 359 325 288 255 223 187 148 98 52 234
Weak STPN [34] v1.3 29.3 - - - - 16.9 - - - 2.6 -
Weak TSM [59] v1.3 30.3 - - - - 19.0 - - - 4.5 -
Weak BM [35] v1.3 36.4 - - - - 19.2 - - - 29 -
Weak CleanNet v1.3 367 331 301 269 232 204 163 133 9.0 45 | 214

modules cannot be jointly trained from scratch, as discussed ACKNOWLEDGMENTS

in Section 5.2.1. Another limitation is that although our
method achieves state-of-the-art WS-TAL performance on
average, it can still perform worse than UntrimmedNet [53]
on a few categories such as BasketballDunk, CricketBowling
and SoccerPenalty, where the action boundaries are ambigu-
ous, as illustrated in Figure 8. CleanNet has difficulty in
distinguishing the preparatory and follow-up phases from
the real action phase with only video-level categorical la-
bels available during training. We speculate that it might
be necessary to incorporate temporal supervision (i.e., full
supervision) to handle these challenging action categories.

To summarize, on the WS-TAL task, our method
achieves state-of-the-art WS-TAL performance on THU-
MOS14, ActivityNet v1.2 and v1.3 datasets. It can even
achieve performances comparable to some fully-supervised
methods. Moreover, extensive experiments in the ablation
study provide some insights on the performance contribu-
tion of each component in CleanNet. On the TAP gener-
ation task, our method achieves competitive performance
compared with fully supervised methods, facilitated by
the extended WS-TAP generation module. The boundary-
based TAPs generated by the WS-TAP generation module
contributes most to the improvement and the TAP fusion
module function well in supplementing to boundary-based
TAPs especially in low IoU range.

6 CONCLUSION

We propose CleanNet for weakly-supervised temporal ac-
tion localization, which leverages the temporal contrast
among snippet-level action classification predictions to lo-
cate the temporal action boundaries. The new TAP evaluator
provides contrast scores as pseudo-supervision to replace
manually labeled temporal boundaries. Besides, we pro-
pose a new WS-TAP generation module compatible with
weak supervision and introduce the concept of boundary
proposals, which are located and evaluated by the SBVs
we proposed. Boundary-based TAPs are then obtained by
connecting boundary proposals to accommodate flexible
durations. Combining the sliding-window-based TAPs and
boundary-based TAPs, our method achieves state-of-the-art
performance on both TAP generation and WS-TAL task.

This work was supported partly by National Key Ré&D
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