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ABSTRACT
Defined as simultaneously segmenting a set of related videos
to identify the common objects, video co-segmentation has
attracted the attention of researchers in recent years. Exist-
ing methods are primarily based on pair-wise relations be-
tween adjacent pixels/regions, which are susceptible to per-
formance degradation from “empty” video frames (e.g., due
to transient/intermittent common objects). In this paper, a
new multi-level hypergraph based method, termed the full
Video object Co-Segmentation method (VCS), is proposed,
which incorporates both a high-level semantics object model
and a low-level appearance/motion/saliency object model to
construct the hyperedge among multiple spatially and tempo-
rally adjacent regions. Specifically, the high-level semantic
model fuses multiple object proposals from each frame in-
stead of relying on a single object proposal per frame. A hy-
pergraph cut is subsequently utilized to calculate the object
co-segmentation. Experiments on three datasets demonstrate
the efficacy of the proposed VCS method.

Index Terms— Object co-segmentation, Object model,
Hypergraph cut, Fully convolutional network

1. INTRODUCTION

Video object co-segmentation aims at segmenting a common
category of objects from multiple videos, which is utilized
in computer vision tasks such as object centric video sum-
marization, spatio-temporal action localization, and content-
based video retrieval. Unlike single video based methods
(e.g., [1]), the primary advantage of video co-segmentation
is the availability of video semantics (e.g., categorical video
labels) shared among multiple videos. In recent years, most
research efforts [2,3,4,5,6,7,8,9,10] are based on energy min-
imization by exploring pair-wise relations between two adja-
cent pixels/regions [2, 3, 5, 6, 8, 10]. They either leverage the
low-level image features (e.g., color and motion) [2, 4, 7, 9],
mid-level contextual features [8, 10] or object proposals [3,
5, 6]. Inspired by the recent success of Convolutional Neural
Network (CNN)-based methods [11, 12], fully convolutional
network (FCN)-based [13,14] methods are also introduced for
video object segmentation.
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Fig. 1: Illustration of the proposed VCS method.

Despite the success of the aforementioned methods, most
of them only exploit pair-wise correlations between pix-
els/regions, neglecting the higher order correlations between
multiple ones. Besides, object proposal based methods ubiq-
uitously utilize a single object proposal per video frame,
which will consistently fail to localize common objects once
the object proposal is inaccurate. Moreover, most existing
methods require (almost) all video frames containing the
common objects. With the percentage of “empty” frames
without the common objects increasing, their performances
degrade dramatically.

To resolve such limitations, we propose a multi-level hy-
pergraph based full Video object Co-Segmentation method
(VCS, as summarized in Fig. 1), which accounts for high
order correlations, incorporates multiple object proposals
per video frame, and robust to videos with large portions of
“empty” frames. The hyperedge computation in our VCS
method benefits from a hybrid object model (incorporating
multi-modality information [15]), with one high-level model
focused on video semantics, and a separate low-level model
dedicated for video appearance/motion/saliency. Specifically,
the high-level object model merges multiple object propos-
als to generate a more reliable object region per frame, thus
producing more robust high-level features. The low-level
features (appearance, motion and saliency) naturally comple-
ment the high-level ones, jointly contributing to a better video



representation. The hypergraph cut algorithm [16] is subse-
quently utilized to achieve the final object co-segmentation.

The contributions of the paper are as follows. 1) The
VCS method is robust against large percentage of “empty”
video frames (without the common objects). 2) The VCS
method incorporates a multi-level hypergraph based hybrid
object model, which accounts for both the high-level seman-
tics and the low-level features. 3) A new, challenging video
co-segmentation dataset is collected with both ground-truth
categorical labels and pixel-wise foreground labels.

2. PRELIMINARIES OF HYPERGRAPH

Let V = {vi} denote the node set comprising a finite set
of nodes and E denote the hyperedge set comprising a fam-
ily of subsets of V , such that ∪e∈E= V . G = {V,E, ω} is
a weighted hypergraph with the node set V and hyperedge
set E, and each hyperedge e is assigned a positive weight
ω(e) [17]. A hyperedge e is incident with a node v when v ∈
e. For a node v ∈ V , its degree is d(v) =

∑
e∈E|v∈e ω(e),

For a hyperedge e ∈ E, its degree is δ(e) = |e|. A hyper-
graph G can be represented by a |V | × |E| incidence matrix
H with entries h(v, e) = 1 if v ∈ e and 0 otherwise. Then
d(v) =

∑
e∈E ω(e)h(v, e), and δ =

∑
v∈V h(v, e). Let Dv

and De denote the diagonal matrices containing the node and
hyperedge degrees, respectively. Let W be the diagonal ma-
trix containing the weighted hyperedges.

3. PROBLEM FORMULATION

Given a set of videos F = {Fn}Nn=1, our goal is to find a
binary co-segmentation labeling B = {Bn}Nn=1 of the com-
mon object from F. Each video Fn = {fnt }Tt=1 consists of
T frames, and similarly Bn = {Bn

t }Tt=1. Bn
t = {bt,k}Kk=1 is

the binary labels of frame fnt , where bnt,s ∈ {0, 1} denotes the
segmentation label of superpixel snt,k either belonging to the
common object (bnt,k = 1) or the background (bnt,k = 0).

Video object co-segmentation can be cast into the hyper-
graph cut framework. Thus, the segmentation of the common
object is to partition the nodes (superpixels) V of the hyper-
graph G = (V,E, ω) into a common object subset S and a
background (complement) subset Sc. If the nodes of hyper-
edge e are included in S and Sc simultaneously, this hyper-
edge should be cut. The hyperedge boundary ∂S := {e ∈
E|e ∩ S 6= ∅, e ∩ Sc 6= ∅} is a set of hyperedges. The vol-
ume of S is the sum of the degrees of the nodes in S, which
is defined as vol(S) =

∑
v∈S d(v). The partition of the hy-

pergraph lead to the hyperedge boundaries,

vol(∂S) :=
∑
e∈S

ω(e)
|e ∩ S||e ∩ Sc|

δ(e)
, (1)

where δ(e) is the degree of hyperedge e. It is clear that
vol(∂S) = vol(∂Sc). Like the normalized cut [18], we try to

get a natural partition where internode connections within the
same cluster are dense, while those across different clusters
are sparse. Therefore, the two-way normalized hypergraph
partition minimizes the bias of unbalanced partitioning as,

argminS⊂V Cut(S) := vol(∂S)

(
1

vol(S)
+

1

vol(Sc)

)
. (2)

With the approximate algorithm of spectral analysis in [16],
the hypergraph is partitioned and the final object co-segmentation
result is obtained.

3.1. Hypergraph Construction

The superpixels generated by SLIC [19] are utilized as the
nodes of the hypergraph. Nodes with similar features are
clustered into the same hyperedge with eigenvalue decompo-
sition of Laplacian matrix L = D−

1
2 (D − A)D− 1

2 . A is the
affinity matrix, where A(p, q) represents the affinity between
two nodes p and q, and is calculated by coupling a high-level
and a low-level object model. D is the diagonal matrix with
D(p, p) =

∑
q A(p, q).

3.2. Hyperedge Computed with High-level Object Model

The high-level object model creates a more reliable object
region for each video frame to guide the hyperedge com-
putation. First, multiple object proposals are generated per
frame [20], and a video object score O(rm) for each object
proposal rm is estimated by combining appearance, motion,
and semantic cues,

O(rm) = Oa(rm) +Om(rm) +Os(rm), (3)

where Oa(rm) denotes the appearance score of rm with the
objectness [20]. rm will be assigned a high objectness score
if it exhibits large distinction from surroundings and has a
well-defined closed boundary. Om(rm) is the motion score
of rm, which is calculated by the average Frobenius norm of
the gradient of optical flow around the boundary of rm [21].
Os(rm) is the semantic score of rm. By using a FCN [22]
pre-trained on ImageNet [23] as base network, we train a meta
network on one video that randomly selected from each video
category, and then fine-tuned the meta network on the first
object frame of each video to obtain the test network. The
segmentation results obtained by the fine-tuned network are
utilized to compute the semantic score.

After sorting the object proposals by their video object
scores, we merge the top M (empirically M = 10) ranked
object proposals to obtain a candidate object region for each
frame, and further refine it to obtain a reliable object region.
Specifically, we use k-means to cluster the candidate object
proposals of all video frames into two sets, i.e. a believable set
Qb and an unbelievable setQu. By treating the original object
proposals that are used to merge the top M ranked candidate
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Fig. 2: Reliable object region generation.

object proposals in Qb as positive samples, and the remain-
ing ones as negative samples, we train a linear SVM classi-
fier on the L2-normalized fc7 feature space (fully-connected
7th layer activation feature of Resnet [24]). We subsequently
classify all the original proposals by this SVM classifier, and
obtain a classification score Oc(rm) for each original object
proposal rm. Finally, we refine the video object score O(rm)
of rm by

O(rm)← O(rm) +Oc(rm), (4)

and merge the new top M ranked object proposals into a reli-
able object region r̂ for each frame. In this way, the object
proposals that simultaneously contain the object and back-
ground can be filtered out. Fig. 2 illustrates the reliable object
region generation procedure.

The reliable object region r̂ of each frame is utilized to
guide the hyperedge computation. The nodes (superpixels)
belonging to the reliable object region contribute to one hy-
peredge and the rest of nodes contribute to the alternative hy-
peredge. Therefore, the affinity between nodes p and q based
on the high-level object model is,

Ah(p, q) =

{
1
M

∑
mO(r̂m), if p, q ∈ r̂/r̂c

1
Np+Nq

, otherwise
, (5)

where r̂m denotes one of the M object proposals that are
merged into r̂, and r̂c denotes the remaining parts per frame.
Np and Nq are the number of pixels in p and q, respectively.

3.3. Hyperedge Computed with Low-level Object Model

The low-level object model computes the hyperedge based
on the appearance, motion and saliency cues. Assume pix-

els from the same superpixel have identical motion, the mo-
tion feature Pm = (Pu, Pd) of each superpixel is computed
by optical flow [25], which consists of the motion intensity
Pu = 1

Ns

∑
j ωjuj and direction Pd = 1

Ns

∑
j ωjdj . Ns is

the number of pixels in the superpixel. ωj is a weight gener-
ated from a low-pass 2D Gaussian filter centered on the cen-
troid of the superpixel. uj and dj are the motion intensity and
direction of the jth pixel, respectively.

Pixels from the same superpixel are highly likely to have
similar color, color feature Pc are computed in Lab color
space per superpixel as Pc =

1
Ns

∑
j cj , where cj is the color

value of the jth pixel. Additionally, the saliency detection in-
troduced in [26] is used to generate the saliency map for each
frame. Per-superpixel saliency value Ps is obtained by aver-
aging all per-pixel saliency values. The affinity between two
superpixels p and q based on the low-level object model is,

Al(p, q) = e−
||Pl(p)−Pl(q)||2

σl , (6)

where l ∈ {m, c, s} denotes the motion, appearance and
saliency, respectively. σl is the deviation of ||Pl(p)−Pl(q)||2.

3.4. Hyperedge Weights Computation

With the obtained high-level and low-level affinity matrices
(Ah and Al, respectively, in addition to Am, Ac, and As),
the corresponding Laplacian matrices Lh and Ll (also Lm,
Lc, and Ls) can be obtained. With these Laplacian matrices,
eigenvalue decomposition leads to the hyperedges, and their
weights ω(e) for hyperedge e is,

ω(e) = c ·
∑

p,q∈eA(p, q)∑
p∈e,q/∈eA(p, q)

, (7)

where c is a normalization constant to ensure
∑

e∈E ω(e) = 1.
Depending on a hyperedge being high-level or low-level,
A(p, q) is computed by Eq.(5) or Eq.(6), accordingly. Per
Eq.(7), a large weight will be assigned to the hyperedge if the
similarity of the superpixels is high, and vice versa.

4. EXPERIMENTS

All video object co-segmentation methods are evaluated on
three datasets, i.e., the VCoSeg dataset [7, 27, 28], XJTU-
Stevens dataset [10] and a newly proposed Noisy-ViCoSeg
dataset. Three individual video object segmentation meth-
ods (VOS [29], FOS [30], BVS [31]), and two multi-video
object co-segmentation methods (MVC [32], VOC [3]) are
used as competing algorithms. To better understand the
contribution of hybrid object model in the proposed VCS
method, an ablation study is also included. We removed the
high-level semantics object model in VCS and denote it as
(VCS-H). The ablated VCS-H is not evaluated on XJTU-
Stevens or Noisy-ViCoSeg datasets, due to both datasets



contain “empty” frames that cannot be gracefully handled by
the low-level object model alone.
Experiment 1. VCoSeg dataset [7, 27, 28] consists of 3 cat-
egories of 10 videos, and results are summarized in Tab 1 in
terms of average IoU scores. On average, the proposed VCS
method outperforms competing ones evidently, and the value
of the hybrid object model is evident by comparing the per-
formance gap between VCS and VCS-H.

Table 1: IoU scores on VCoSeg dataset.

Video VOS FOS BVS MVC VOC VCS-H VCS
chachacha 55.3 61.0 71.7 56.3 53.2 67.2 74.7
ice skater 82.1 81.6 83.5 69.1 65.3 66.3 80.7
kite surfer 69.1 35.0 65.9 38.2 51.6 52.9 69.3
Avg. 68.8 59.2 73.7 54.5 56.7 62.1 74.9

Experiment 2. XJTU-Stevens dataset [10] consists of 10
categories of 101 publicly available internet videos, including
3.7% “empty” frames and many difficult frames (where the
common object exhibits large variations in appearance, size,
and shape). The average IoU scores and some sample results
are presented in Table2 and Fig. 3, respectively. The perfor-
mance advantage of the proposed VCS method is evident and
the robustness of VCS is verified.

Table 2: IoU scores on XJTU-STEVENS dataset.

Video VOS FOS BVS MVC VOC VCS
airplane 35.6 70.1 35.1 57.6 58.6 66.7
balloon 80.2 71.2 78.7 86.8 86.8 93.2
bear 87.4 81.0 85.7 80.8 83.2 88.0
cat 50.1 53.4 71.2 75.2 78.8 73.7
eagle 55.4 75.9 59.4 72.2 78.4 79.3
ferrari 55.3 67.4 61.3 75.4 61.8 82.9
figure skating 64.9 36.1 48.7 61.7 65.3 69.9
horse 78.4 74.5 79.5 80.3 85.1 82.7
parachute 57.8 48.3 76.4 80.8 83.4 79.1
single diving 52.7 49.8 35.6 59.1 69.5 63.0

Avg. 61.8 62.8 63.2 73.0 75.1 77.9
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Fig. 3: Typical sample results on XJTU-STEVENS dataset.

Experiment 3. Noisy-ViCoSeg dataset is new collected and
proposed in this paper, and it consists of 35 videos of 12 cate-
gories, where each video contains many “empty” frames. On
average, 30.3% of video frames are without the common ob-
ject. We manually assign each frame a per-frame label indi-
cating whether it contains the common object. In addition,

each video frame is also labeled with a per-pixel segmenta-
tion mask, indicating whether the common object is present
at each pixel location. We compared our method with other
five state-of-the-art methods. With the IoU scores in Table 3
and some example results in Fig. 4, the proposed VCS method
is superior to the competing ones. One plausible explanation
to such large performance gap is the designed robustness to
“empty” frames in the proposed VCS method.

Table 3: IoU scores on the proposed Noisy-ViCoSeg dataset.

Video VOS FOS BVS MVC VOC VCS
airplane 46.1 82.9 54.7 51.8 34.1 73.6
F1 21.7 70.3 15.3 56.3 19.3 60.6
gymnastics 29.4 35.2 19.7 23.1 10.4 62.3
lion 61.6 76.5 50.2 74.7 70.9 49.0
ostrich − 4.5 61.6 20.0 1.1 53.6
panda 63.9 85.1 51.7 30.6 45.7 72.9
parkour 60.2 28.1 39.8 60.6 38.9 65.5
rock 47.1 60.8 64.1 46.4 53.0 60.6
skateboarding 54.2 44.3 53.5 38.9 8.0 59.6
skiing 70.1 84.7 49.0 75.2 36.6 74.1
surfing 53.5 48.7 66.8 52.0 53.6 73.0
tiger 43.4 45.6 53.9 31.5 28.7 54.6
Avg. 45.9 55.6 48.4 46.8 33.4 63.3
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Fig. 4: Typical sample results on Noisy-ViCoSeg dataset.

5. CONCLUSION

In this paper, the full Video object Co-Segmentation method
(VCS) is proposed to automatically co-segment the common
objects in multiple noisy, cluttered videos. The proposed VCS
method benefits from a multi-level hypergraph architecture
incorporating both a high-level semantic model and a low-
level object model, which contributes to its robustness against
transient and intermittent objects. Empirical results on three
video object co-segmentation datasets have verified the per-
formance advantage of the proposed method.
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