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Abstract—For visual-semantic embedding, the existing methods
normally treat the relevance between queries and candidates
in a bipolar way – relevant or irrelevant, and all “irrelevant”
candidates are uniformly pushed away from the query by
an equal margin in the embedding space, regardless of their
various proximity to the query. This practice disregards relatively
discriminative information and could lead to suboptimal ranking
in the retrieval results and poorer user experience, especially in
the long-tail query scenario where a matching candidate may
not necessarily exist. In this paper, we introduce a continuous
variable to model the relevance degree between queries and
multiple candidates, and propose to learn a coherent embedding
space, where candidates with higher relevance degrees are mapped
closer to the query than those with lower relevance degrees. In
particular, the new ladder loss is proposed by extending the
triplet loss inequality to a more general inequality chain, which
implements variable push-away margins according to respective
relevance degrees. To adapt to the varying mini-batch statistics
and improve the efficiency of the ladder loss, we also propose
a Silhouette score-based method to adaptively decide the ladder
level and hence the underlying inequality chain. In addition, a
proper Coherent Score metric is proposed to better measure the
ranking results including those “irrelevant” candidates. Extensive
experiments on multiple datasets validate the efficacy of our
proposed method, which achieves significant improvement over
existing state-of-the-art methods.

Index Terms—Coherent Visual-Semantic Embedding, Adaptive
Ladder Loss, Hard-Contrastive Sampling, Coherent Score.

I. INTRODUCTION

V ISUAL-SEMANTIC embedding aims to map images
and their descriptive sentences into a common space,

so that we can retrieve sentences given query images or vice
versa, which is namely cross-modal retrieval [1]. Recently,
the advances in deep learning have made significant progress
on visual-semantic embedding [2], [3], [4], [5]. Generally,
images are represented by the Convolutional Neural Networks
(CNN), and sentences are represented by the Recurrent Neural
Networks (RNN). A triplet ranking loss is subsequently
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A herd of elephants standing on the side of a grass covered hill.

An elephant stands near water and a stone wall.

A pair of elephants with their trunks entwined.

A group of four skiers posing for a picture.
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Fig. 1. Comparison between the incoherent (left) and coherent (right) visual-
semantic embedding space. Existing methods (left) pull the totally-relevant
sentence (a) close to the query image, while pushing away all other sentences
(b, c, and d) equally. Therefore, the relative proximity of (b, c, and d) are
not necessarily consistent with their relevance degrees to the query (solid
black dot). On contrary, our approach (right) explicitly preserves the proper
relevance order in the retrieval results.

optimized to make the corresponding representations as close
as possible in the embedding space [6], [7].

For visual-semantic embedding, previous methods [8], [6]
tend to treat the relevance between queries and candidates in a
bipolar way: for a query image, only the corresponding ground-
truth sentence is regarded as relevant, and other sentences
are equally regarded as irrelevant. Therefore, with the triplet
ranking loss, only the relevant sentence is pulled close to the
query image, while all the irrelevant sentences are pushed away
equally, i.e., be pushed from the query by an equal margin.
However, among those so-called irrelevant sentences, some
are more relevant to the query than others, thus should be
treated accordingly for coherent results.

Similarly, it is arguably a disadvantage in recent retrieval
evaluation metrics which disregard the ordering/ranking of
retrieved “irrelevant” results. For example, the most popular
Recall@K (i.e., R@K) [2], [3], [5] is purely based on the
ranking position of the ground-truth candidates (denoted as
totally-relevant candidates in this paper); while neglecting
the ranking order of all other candidates. However, the user
experience of a practical cross-modal retrieval system could be
heavily impacted by the ranking order of all top-N candidates,
including the “irrelevant” ones, as it is often challenging to
retrieve enough totally-relevant candidates in the top-N results
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(known as the long-tail query challenge [9]). Given a query
from the user, when an exact matching candidate does not exist
in the database, a model trained with only bipolar supervision
information will likely fail to retrieve those somewhat relevant
candidates, and produce a badly ordered ranking result. As
demonstrated in Figure 1, given a query image (solid black
dot), the ground-truth sentence (a) is the totally-relevant one,
which does occupy the top of the retrieved list. Besides that,
the sentence (b) is notably more relevant than (c) or (d), so
ideally the (b) should be ranked before the (c), and the (d)
should be ranked at the bottom.

Therefore, it is beneficial to formulate the semantic relevance
degree as a continuous variable rather than a binary variable
(i.e., relevant or irrelevant). And the relevance degree should
be incorporated into embedding space learning, so that the
candidates with higher relevance degrees will be closer to the
query than those with lower degrees.

In this paper, we first propose to measure the relevance
degree between images and sentences, based on which we
design the ladder loss to learn a coherent embedding space.
The “coherent” means that the similarities between queries
and candidates are conformal with their relevance degrees.
Specifically, the similarity between the query image Iq and its
totally-relevant sentence Tq in the conventional triplet loss [5] is
encouraged to be greater than the similarity between the Iq and
other sentences Tp. Likewise, with the ladder loss formulation,
we consider the relevance degrees of all sentences, and extend
the inequality s(Iq, Tq) > s(Iq, Tp) to an inequality chain,
i.e., s(Iq, Tq) > s(Iq, Tp1

) > s(Iq, Tp2
) > · · · > s(Iq, TpL

),
where Tpl

is more relevant to Iq than Tpl+1
, and s(·, ·) denotes

cosine similarity. Using the inequality chain, we design the
ladder loss so that the sentences with lower relevance degrees
will be pushed away by a larger margin than the ones with
higher relevance degrees. As a result, it leads to learn a coherent
embedding space, and both the totally-relevant as well as the
somewhat-relevant sentences can be properly ranked.

Albeit the underlying inequality chains could be decided after
grouping samples with manually specified relevance degree
thresholds, the varying mini-batch statistics (i.e., the distribution
of the relevance degree values) during the training process may
result in inefficiency for the ladder loss. For instance, when all
the relevance degrees of the not totally-relevant samples within
the mini-batch are less than the given threshold, ladder loss
will gracefully degenerate into the fundamental triplet loss and
discard any relevance information. Namely, fixed thresholds
are not flexible to better exploit the relevance information from
the “somewhat relevant” samples. To this end, we extend the
ladder loss with a Silhouette score-based automatic K-Means
clustering method for adaptively selecting ladder levels to
dynamically form the inequalities for each mini-batch. With
this method incorporated, adaptive ladder loss can better exploit
relevance degree information and further boost the coherence
of embedding space.

In order to better evaluate the quality of retrieval results,
we propose a new Coherent Score (CS) metric, which is
designed to measure the alignment between the real ranking
order and the expected ranking order. The expected ranking
order is decided according to the relevance degrees, so that

the CS can properly reflect user experience for cross-modal
retrieval results. In brief, our contributions are:

1) We propose to formulate the relevance degree as a
continuous rather than a binary variable, which leads
to learn a coherent embedding space, where both the
totally-relevant and the somewhat-relevant candidates can
be retrieved and ranked in a proper order.

2) To learn a coherent embedding space, a ladder loss is
proposed by extending the inequality in the triplet loss
to an inequality chain, so that candidates with different
degrees will be treated differently.

3) To improve ladder loss efficiency for a more coherent
embedding space, we propose a Silhouette score-based
method to adaptively decide the inequality chains during
the training process due to varying mini-batch statistics.

4) A new metric, Coherent Score (CS), is proposed to
evaluate the ranking results, which can better reflect
user experience in a cross-modal retrieval system.

This paper is an extension of our previous conference
paper [10] with an adaptive extension of the previous approach,
more technical details, and improved readability. In brief, the
changes include (1) a new adaptive version of the ladder loss
which can adaptively decide the underlying inequality chain;
(2) More figures, illustrations and details on the proposed
loss function, the adaptive selection of ladder levels, and
the coherent score; (3) Replacement of the fine-tuned BERT
with Sentence-BERT [11] for relevance degree; (4) Fully
updated experimental results including new parameter searching
experiments for the adaptive version of ladder loss; (5) More
visualizations of retrieval results on coherent visual-semantic
embedding; (6) Reorganization of the mathematical symbols
in order to avoid ambiguity; (7) Introduction of more recent
related works.

The remainder of this paper is organized as follows. Sec-
tion II briefly reviews the related works on visual-semantic
embedding and metric learning. The problem formulation,
relevance degree, ladder loss and its adaptive extension,
and the coherence score will be introduced in Section III.
Extensive experiments with detailed discussions are presented
in Section IV and Section V. In the last section, the whole
paper is concluded.

II. RELATED WORK

A. Visual-Semantic Embedding

Visual-semantic embedding, as a kind of multi-modal joint
embedding, enables a wide range of tasks such as image-
caption retrieval [4], [2], [5], image captioning, and visual
question-answering [12]. Generally, the methods of visual-
semantic embedding could be divided into two categories.
The first category is based on Canonical Correlation Analysis
(CCA) [13], [14], [15], [16] which finds linear projections
that maximize the correlation between projected vectors from
the two modalities. Extensions of CCA to a deep learning
framework have also been proposed [17], [18].

The second category involves metric learning-based em-
bedding space learning [19], [20], [5]. DeViSE [19], [21]
learns linear transformations of visual and textual features
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to the common space. After that, Deep Structure-Preserving
(DeepSP) [20] is proposed for image-text embedding, which
combines cross-view ranking constraints with within-view
neighborhood structure preservation. In [22], Niu et al. propose
to learn a hierarchical multimodal embedding space where not
only full sentences and images but also phrases and image
regions are mapped into the space. Recently, Fartash et al. [5]
incorporate hard negatives in the ranking loss function, which
yields significant gains in retrieval performance. To further
narrow the heterogeneity gap between different modalities,
Lin [23] explores the similarity between inter-modal instances.
Yu [24] proposes a plug-and-play module to capture rich visual
semantics and help to enhance the visual representation for
cross-modal analysis. Ma [25] propose to leverage multi-level
correlation information for hashing. Compared to CCA-based
methods, metric learning-based methods scale better to large
dataset with stochastic optimization in training.

B. Deep Metric learning and Image Retrieval
Deep metric learning has many other applications such as

face recognition [6], person re-identification [26] and fine-
grained recognition [27], [28], [29]. The loss function design
and sample mining strategy in metric learning could be subtle
but important problems [30]. For example, the contrastive
loss [8] pulls all positives close, while all negatives are
separated by a fixed distance. However, it could be severely
restrictive to enforce such fixed distance for all negatives. This
motivated the triplet loss [6], which only requires negatives to
be farther away than any positives on a per-example basis, i.e.,
a less restrictive relative distance constraint. After that, many
variants of triplet loss are proposed. For example, PDDM [31]
and Histogram Loss [32] use quadruplets. Beyond that, the
n-pair loss [7] and Lifted Structure [27] define constraints on
all images in a batch.

Recently, Wang et al. [33] provide a multi-similarity loss
with general pair weighting for understanding the recent pair-
based loss functions. Zhou et al. [34] propose an adversarial-
example-augmented triplet loss for enhancing image retrieval
robustness against input image perturbations. Wang et al. [35]
present a ranking-motivated structured loss that exploits all
instances in the gallery. Xuan et al. [36] characterize the space
of triplets and analyze the impact of hard negative examples to
the triplet loss. Jun et al. [37] propose a framework to exploit
multiple global descriptors to get an ensemble effect for image
retrieval. Min et al. [38] propose a two-stage triplet network
using auxiliary joint learning of classification and region-level
supervision for image retrieval.

However, all the aforementioned methods formulate the
relevance as a binary variable. Thus, our ladder loss could
be used to boost those methods. Besides, since diversity is
also an important factor for both image retrieval and text
retrieval results [39], we argue that a coherent embedding is
also beneficial for retrieval diversity, because less irrelevant
and more relevant retrieval results will appear in the top.

III. OUR APPROACH

Given a set of image-sentence pairs D = {(Ii, Ti)Ni=1}, the
visual-semantic embedding aims to map both images {(Ii)Ni=1}

and sentences {(Ti)Ni=1} into a common space. In previous
methods, for each image Iq , only the corresponding sentence Tq
is regarded as relevant, and the others {Tp, (p ∈ N−q)} are all
regarded as irrelevant, where N−q = {i|1 ≤ i ≤ N, and i ̸= q}
is the index set of the not totally-relevant samples. Thus, only
the inequality s(Iq, Tq) > s(Iq, Tp), (p ∈ N−q) is enforced in
previous methods.

In contrast, our approach will measure the semantic relevance
degree between Iq and each sentence in {Tp, (p ∈ N−q)}.
Intuitively, the corresponding sentence Tq should have the
highest relevance degree, while the others would have different
degrees. Thus, in our coherent embedding space, the similarity
of an image-sentence pair with higher relevance degree is
desired to be greater than the similarity for a pair with lower
degree. Our approach only relies on customized loss function
and it has no restrictions on the image/sentence representation,
so it is flexible to be incorporated into any neural network
architecture.

To this end, we first define a continuous variable to measure
the semantic relevance degree between images and sentences
(in Section III-A). Subsequently, to learn a coherent embedding
space, we design a novel ladder loss to push different candidates
away by distinct margins according to their relevance degree
(in Section III-B). training mini-batch statistics, we present an
adaptive ladder loss in Section III-C. At last, we propose the
Coherent Score metric to properly measure whether the ranking
order is aligned with their relevance degrees (in Section III-D).

A. Relevance Degree

In our approach, we need to measure the semantic relevance
degree for image-sentence pairs. The ideal ground-truth for
image-sentence pair is human annotation, but in fact it is
infeasible to annotate such a multi-modal pairwise relevance
dataset due to the combinatorial explosion in the number of
possible pairs. On the other hand, the single-modal relevance
measurement (i.e., between sentences) is often much easier than
the cross-modal one (i.e., between sentences and images). For
example, recently many newly proposed Natural Language
Processing (NLP) models [40], [41], [42] achieved very
impressive results [43] on various NLP tasks. Specifically, on
the sentence similarity task the BERT [40] has nearly reached
human performance. Compared to single-modal metric learning
in image modality, the natural language similarity measure is
more mature. Hence we cast the image-sentence relevance
problem as a sentence-sentence relevance problem.

Intuitively, for an image Iq, the relevance degree of its
corresponding sentence Tq is supposed to be the highest, and it
is regarded as a reference when measuring the relevance degrees
between Iq and other sentences. In other words, measuring
the relevance degree between the image Iq and the sentence
Tp, (p ∈ N ) is cast as measuring the relevance degree (i.e.,
similarity) between the two sentences Tq and Tp, (p ∈ N ).
Similarly, if the query is a sentence Tq, the relevance degree
between Tq and image Ip, (p ∈ N ) can be measured by the
relevance degree between the two sentences Tq and Tp, (p ∈
N ), where the Tp, (p ∈ N ) is the corresponding ground-truth
sentence of the image Ip, (p ∈ N ).
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Fig. 2. Illustration of difference between Triplet Loss and our Ladder Loss.
The triplet loss treats the relevance between query (“Anchor”) and candidates
(“Positive” and “Negative” examples with different relevance degrees to the
query) in a bipolar way – either relevant or irrelevant, neglecting their different
proximity to the query. In contrast, our proposed ladder loss treats the samples
differently according to their relevance degrees. Ladder loss can aid the learning
of a coherent visual-semantic embedding space.

To this end, we can employ the Bidirectional Encoder
Representations Transformers (BERT) [40] fine-tuned on the
Semantic Textual Similarity Benchmark (STS-B) dataset [44],
[40] which achieves a Pearson correlation coefficient of 0.88
on the validation set of STS-B, indicating a good alignment
between predictions and human perception. However, according
to Li et al. [45], the semantic information in the BERT
embeddings is not fully explored. Moreover, BERT requires
that both sentences for similarity calculation are fed into the
network, and result in a massive computational overhead [11],
which makes it unsuitable for our task that needs to calculate
sentence similarity intensively. To solve this problem, Reimers
et al. [11] propose Sentence-BERT, a modification of BERT
to derive semantically meaningful sentence embeddings that
can be compared using cosine similarity.

In short, the relevance degree between an image Iq and a
sentence Tp is calculated as the similarity score between Tq
and Tp with Sentence-BERT [11]:

R(Iq, Tp) = R(Tq, Tp) = Sentence-BERT(Tq, Tp). (1)

Ideally, a well-trained coherent visual semantic embedding
space should be able to return retrieval results that are coherent
to such relevance degree.

B. Ladder Loss Function

In this section, the conventional triplet loss is briefly
overviewed, followed by our proposed ladder loss. A diagram
illustrating the difference between the existing triplet loss and
the proposed ladder loss is presented in Figure 2.

1) Triplet Loss: Let vq be the visual representation of a
query image Iq, and hp indicates the representation of the
sentence Tp. In the triplet loss formulation, for query image Iq ,
only its corresponding sentence Tq is regarded as the positive
(i.e., relevant) sample; while all other sentences {Tp, (p ∈
N−q)} are deemed negative (i.e., irrelevant). Therefore, in
the embedding space the similarity between vq and hq is

encouraged to be greater than the similarity between vq and
hp, (p ∈ N−q) by a margin α,

s(vq, hq)− s(vq, hp) > α, (p ∈ N−q), (2)

which can be transformed as the triplet loss function,

Ltri(q) =
∑

p∈N−q

[α− s(vq, hq) + s(vq, hp)]+, (3)

where [·]+ indicates max{0, ·}. Considering the reflexive
property of the query and candidate, the full triplet loss is

Ltri(q) =
∑

p∈N−q

[α− s(vq, hq) + s(vq, hp)]+

+
∑

p∈N−q

[α− s(hq, vq) + s(hq, vp)]+.
(4)

2) Ladder Loss: We first calculate the relevance degrees
between image Iq and each sentence Tp, (p ∈ N−q). After that,
these relevance degree values are divided into L levels with
thresholds θl, (l = 1, 2, . . . , L− 1). As a result, the sentence
index set N−q is divided into L subsets N−q

1 ,N−q
2 , . . . ,N−q

L ,
and sentences in N−q

l are more relevant to the query than the
sentences in N−q

l+1.
To learn a coherent embedding space, the more relevant

sentences should be pulled closer to the query than the less
relevant ones. To this end, we extend the single inequality
Eq. (2) to an inequality chain,

s(vq, hq)− s(vq, hi) > α1, (i ∈ N−q
1 ),

s(vq, hi)− s(vq, hj) > α2, (i ∈ N−q
1 , j ∈ N−q

2 ),

s(vq, hj)− s(vq, hk) > α3, (j ∈ N−q
2 , k ∈ N−q

3 ),

· · · ,

(5)

where α1, . . . , αL are the margins between different non-
overlapping sentence subsets.

In this way, the sentences with distinct relevance degrees are
pushed away by distinct margins. For examples, for sentences
in N−q

1 , they are pushed away by margin α1, and for sentences
in N−q

2 , they are pushed away by margin α1 + α2. Based on
such inequality chain, we could define the ladder loss function.
For simplicity, we just show the ladder loss with three-subset-
partition (i.e., L = 3) as an example,

Llad(q) = β1L1
lad(q) + β2L2

lad(q) + β3L3
lad(q), (6)

L1
lad(q) =

∑
i∈N−q

1:L
[α1 − s(vq, hq) + s(vq, hi)]+,

L2
lad(q) =

∑
i∈N−q

1 ,j∈N−q
2:L

[α2 − s(vq, hi) + s(vq, hj)]+,(7)

L3
lad(q) =

∑
j∈N−q

2 ,k∈N−q
3:L

[α3 − s(vq, hj) + s(vq, hk)]+,

where β1, β2 and β3 are the weights between L1
lad(q), L2

lad(q)
and L3

lad(q), respectively. N−q
l:L indicates the union from N−q

l

to N−q
L .

As can be expected, the L1
lad(q) term alone is identical to

the original triplet loss, i.e., the ladder loss degenerates to
the triplet loss if β2 = β3 = 0. Note that the dual problem
of sentence as a query and images as candidates also exists.
Similar to obtaining the full triplet loss Eq. (4), we can easily
write the full ladder loss Llad(q), which is omitted here for
sake of brevity. In all experiments of this paper, we always use
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Fig. 3. Demonstration of adaptive ladder level selection based on K-Means
clustering and Silhouette score. Given a batch of 10 samples and their relevance
degrees to the query, for the upper example the mean Silhouette score for
k = 2 is 0.791, while that for k = 3 is 0.632 (2 ≤ k ≤ 5; cases for k = 4
and k = 5 are omitted for brevity). Since the maximum Silhouette score
corresponds to k = 2, the number of ladder levels is set as 2 for the current
batch of samples, and the clusters for k = 2 is directly used as the grouping
result, i.e. N−q

i , i ∈ {1, 2, . . . , k}. Similarly, in the lower example the mean
Silhouette score for k = 4 is the maximum for 2 ≤ k ≤ 5 (cases for k = 2
and k = 5 are omitted for brevity). Best viewed in color.

the full (i.e., “cycle-consistent”) ladder loss, which contains
both the image-to-sentence and sentence-to-image loss terms.

3) Hard Contrastive Sampling: For visual-semantic embed-
ding, the hard negative sampling strategy [46], [28] has been
validated for inducing significant performance improvements,
where selected hard samples (instead of all samples) are utilized
for the loss computation. Inspired by [28], [5], we develop
a similar strategy of selecting hard contrastive pairs for the
ladder loss computation, which is termed hard contrastive
sampling (HC).

Taking the L2
lad(q) in Eq. (7) as an example, instead of

conducting the sum over the sets i ∈ N−q
1 and j ∈ N−q

2:L, we
sample one or several pairs (hi, hj) from i ∈ N−q

1 and j ∈
N−q

2:L. Our proposed HC sampling strategy involves choosing
the hj closest to the query in N−q

2:L, and the hi furthest to the
query in N−q

1 for the loss computation. Thus, the ladder loss
part L2

lad(q) with hard contrastive sampling can be written as,

L2
lad−HC(q) = [α1 − s(vq, hi∗) + s(vq, hj∗)]+,

j∗ = argmax
j∈N−q

2:L

s(vq, hj),

i∗ = argmin
i∈N−q

1

s(vq, hi),

(8)

where (i∗, j∗) is the index of the hardest contrastive pair
(hi∗ , hj∗). According to our empirical observation, this HC
strategy not only reduces the complexity of loss computation,
but also improves the overall performance.

C. Adaptive Ladder Loss

Since the proposed ladder loss function is based on a series of
inequalities (i.e. Eq.5) across different sample sets, the result
of sample grouping may greatly impact the efficacy of the
loss function. Intuitively, the number L and the corresponding
thresholds θl, (l = 1, 2, . . . , L−1) can be manually set, but due
to the randomness of mini-batch sampling during the training

process (i.e., the relevance degree distribution in a training
mini-batch is volatile), manually fixed thresholds may render
inefficiency for learning a coherent embedding. For instance,
sometimes the relevance degrees of all samples within a batch
are smaller than the given thresholds, then ladder loss will
simply degenerate into the triplet loss, due to lack of training
samples in different ladder levels. Hence, manually tuning
the thresholds is difficult, and the advantages of the proposed
ladder loss would be weakened by fixed thresholds.

To this end, we propose an adaptive method for automatically
grouping the non-positive samples N−q into variable number of
non-overlapping subsets N−q

1 ,N−q
2 , . . . ,N−q

L∗ (LMIN ≤ L∗ ≤
LMAX) beside grouping with manually set thresholds. We cast
this problem into an automatic clustering problem for relevance
degree values R(Iq, Ti), i ∈ N−q. For brevity, we denote
R(Iq, Ti) as Rq,i. Then the relevance degree values can be
clustered into L∗ (LMIN ≤ L∗ ≤ LMAX) sets according to the
mean Silhouette value over all relevance degrees of samples
in N−q , i.e.,

L∗ = argmax
LMIN≤k≤LMAX

1

|N−q|
∑

i∈N−q

Sil
(
Rq,i; {Cξ}kξ=1

)
, (9)

where Sil(·) computes the Silhouette value, {Cξ}kξ=1 is the
k sample clusters from the k-Means clustering algorithm. In
practice, the most appropriate L∗ can be found by evaluating
the mean Silhouette values based on clustering results for each
possible k. Thus, we only need to define the minimal and
maximal ladder numbers LMIN and LMAX, and the problems
of manually set thresholds are addressed.

In particular, we describe the Silhouette value Sil(·) [47] in
detail. Given a set of relevance degree values that are clustered
with K-Means algorithm into k clusters. Firstly, the mean intra-
cluster distance a(Rq,i) between relevance degree Rq,i and all
other data points in the same cluster is defined as follows:

a(Rq,i) =
1

|Ci| − 1

∑
j∈Ci,i̸=j

|Rq,i −Rq,j |, (10)

whose value reflects how well Rq,i is assigned to its cluster
(the smaller the better). Then, the smallest mean distance of
Rq,i to all data points in any other cluster (of which Rq,i is
not included) is defined as:

b(Rq,i) = min
k ̸=i

1

|Ck|
∑
j∈Ck

|Rq,i −Rq,j |. (11)

Finally, the silhouette value of a data point Rq,i is defined as

Sil(Rq,i) =
b(Rq,i)− a(Rq,i)

max{a(Rq,i), b(Rq,i)}
(12)

when |Ci| > 1, or Sil(Rq,i) = 0 when |Ci| = 1. It is clear that
−1 < Sil(Rq,i) < +1, and a large Silhouette value is preferred
for a proper clustering result.

Thus, by using Silhouette value as a criterion, the ladder
levels can be adaptively decided based on the varying mini-
batch relevance degree statistics, no longer relying on manually
selected thresholds to group the samples. The inequality chains
are then directly obtained from the clustering results {Cξ}L

∗

ξ=1.
Namely, the adaptive sentence index sets N−q

ξ correspond to
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Fig. 4. Comparison of the sentence-to-image top-30 retrieval results between VSE++ (baseline, 1st row) and CVSE++ (Ours, 2nd row). For each query sentence,
the ground-truth image is shown on the left, the totally-relevant and totally-irrelevant retrieval results are marked by blue and red overlines/underlines, respectively.
Despite that both methods retrieve the totally-relevant images at identical ranking positions, the baseline VSE++ method includes more totally-irrelevant images
in the top-30 results; while our proposed CVSE++ method mitigates such problem. Figure best viewed in color.

Cξ. After incorporating this method into the proposed ladder
loss, we obtain the adaptive version of ladder loss.

D. Coherent Score

In previous methods, the most popular metric for visual-
semantic embedding is R@K, which only accounts for the
ranking position of the ground-truth candidates (i.e., the
totally-relevant candidates) while neglects others. Therefore,
we propose a novel metric Coherent Score (CS) to properly
measure the ranking order of all top-N candidates (including
the ground-truth and other candidates).

The CS@K is defined to measure the alignment between
the real ranking list r1, r2, . . . , rK and its expected ranking

list e1, e2, . . . , eK , where thee expected ranking list is decided
according to their relevance degrees.

We adopt Kendall’s rank correlation coefficient τ, (τ ∈
[−1, 1]) [48] as the criterion. Specifically, any pair of (ri, ei)
and (rj , ej) where i < j is defined to be concordant if both
ri > rj and ei > ej , or if both ri < rj and ei < ej . Conversely,
it is defined to be discordant if the ranks for both elements
mismatch. When ri = rj or ei = ej , the pair is defined to be
tied. The Kendall’s rank correlation τ depends on the number
of concordant pairs and discordant pairs, and it is defined as

τ =
P −Q√

(P +Q+ T )(P +Q+ U)
, (13)

where P is the number of concordant pairs, Q the number of
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A herd of elephants on the grassy plains.                           
A herd of elephants standing on the side of a grass covered hill.   
Large group of elephants with men dressed in blue riding them.      
An elephant drinking water while the rest of the herd is walking in ...
A group of men riding on top of elephants.                         
A large elephant is shown walking through the terrain.              
A group of four skiers posing for a picture.                       
An elephant standing on top of a lush green hillside.               
A cluster of small boats in shallow water.                          
A herd of cows is in the meadow.                                    
a pair of elephants with their trunks entwined                      
Zebras and wort hogs living together on the plains.                 
three black cows are standing in a field                            
A group of stuffed bears are arranged in a display.                 
a variety of old school show cars lined in a  row                  
a long buffet length table covered in many dishes of different foods
cherry tomatoes  and various food dishes on a table top             
there are many cars that are waiting for the light to turn green    
Three plates of toasted sandwiches are on a counter.                
A compact car is parked beside many motorcycles.                    
Three pizzas are sitting in the windows a small red car.            
There are two toilets and a sink in this bathroom.
A gray couch sitting on top of a rug in a living room.
A living room is shown with tables and seating.
An elephant stands near water and a stone wall.
A busy intersection filled with traffic under traffic lights.
Three zebras stand camouflaged in the wide open plains.
Four giraffes are standing in front of a small puddle.
Many cars in a desert area with planes in the back.
A living room with ample lighting from windows and lamps and brown ...

A herd of elephants standing on the side of a grass covered hill.
A herd of elephants on the grassy plains.
An elephant drinking water while the rest of the herd is walking in ...
Large group of elephants with men dressed in blue riding them.
A large elephant is shown walking through the terrain.
An elephant standing on top of a lush green hillside.
A group of men riding on top of elephants.
a lawn cut out of a big elephant in a yard outside
A herd of cattle is shown in an open field next to a river.
An elephant stands near water and a stone wall.
An elephant with a red cloth over it.
a pair of elephants with their trunks entwined
Four giraffes are standing in front of a small puddle.
Zebras and wort hogs living together on the plains.
a number of cows in a field near a tree
A man on a horse corralling a herd of cattle.
three black cows are standing in a field
A group of birds drinking from a puddle
Many sheep and goats cross a road between grassy fields.
An elephant walks behind another elephant holding it's tail with it's ...
A couple of animals that are in the grass.
there are two very tall giraffes that are in the wild
A herd of cows is in the meadow.
THREE ZEBRA ARE STANDING TOGETHER IN THE OPEN LAND
Men on horses are driving many other horses in a group.
A group of stuffed bears are arranged in a display.
Horses walking in meadow with trees and buildings in background.
Two red and white cows in a pasture with a pond.
Several cows standing in a row on a large open farm.
A couple of bears sitting on a coach, one is holding a book.

a pizza is sitting next to a salad
Three pizzas are sitting in the windows a small red car.
Two photos, each with pizzas, one ham and cheese, one supreme.
A black pan holds several small, cooked pizzas.
A pan filled with meat and vegetables cooking on a stove top.
A slice of pizza with a bunch of vegetable toppings
A pizza and tea kettle sitting on a stove.
the pizza has cheese, tomato sauce, and olives
A pizza with two slices missing from it.
a person is eating a pizza with a fork
A homemade pizza is waiting to be cooked.
Two pieces of bread with sauce on them next to a bowl of chicken ...
A thin crust pizza is topped with olives and onions.
This meal has beans and three slices of pita bread.
a fresh baked pizza with piping hot cheese
A woman puts spices on a skillet of food that is cooking.
an image of two people on skiis going down the slope
A person cutting a pizza on top of parchment paper.
A white plate topped with a vegetables salad.
A herd of elephants standing on the side of a grass covered hill.
An arrangement or orchids and greenery in a flower pot.
A loaded open sandwich at a dinner table.
A plate with a hamburger and a salad on it
a hot dog topped with tomatoes and peppers with a side of fries
there are many fire trucks and=f fire cars in this garage
A child's bedroom has plenty of storage space and a small chair.
A toilet is in a tiled bathroom with a large window looking out on ...
Man about to bite into hot dog with many toppings.
Several buses and cars sitting at a traffic light on a road.
A kitchen with a stove, microwave, telephone, table and chair.

a pizza is sitting next to a salad
A black pan holds several small, cooked pizzas.
Two photos, each with pizzas, one ham and cheese, one supreme.
A homemade pizza is waiting to be cooked.
A pan filled with meat and vegetables cooking on a stove top.
a fresh baked pizza with piping hot cheese
the pizza has cheese, tomato sauce, and olives
Two pieces of bread with sauce on them next to a bowl of chicken ...
A slice of pizza with a bunch of vegetable toppings
A thin crust pizza is topped with olives and onions.
A pizza and tea kettle sitting on a stove.
Three pizzas are sitting in the windows a small red car.
A pizza with two slices missing from it.
a person is eating a pizza with a fork
A very tasty looking dish with some broccoli and other items.
A plate with a hamburger and a salad on it
A person cutting a pizza on top of parchment paper.
a meat dish with broccoli and peppers on a white plate
A white plate topped with a vegetables salad.
Two meat sandwiches with potato salad on a white plae
A woman puts spices on a skillet of food that is cooking.
A loaded open sandwich at a dinner table.
A plate of hotdogs, lettuce and tomatoes next to a cup of beer.
a table with many different vegetables and fruit
A metal platter topped with fish and vegetables.
A simple meal of chicken and a large serving of broccoli.
Two small trays filled with an assortment of food items
a cheese pizza cut into slices on a table
This meal has beans and three slices of pita bread.
cherry tomatoes  and various food dishes on a table top

VSE++: CVSE++: VSE++: CVSE++:

Gourmet hot dogs smothered with sauce on plate.
A plate of hot dogs and other food.
A plate of hotdogs, lettuce and tomatoes next to a cup of beer.
a hot dog topped with tomatoes and peppers with a side of fries
Too hot dog sitting on top of a red tray with a beer near.
Someone holding a hot dog in their hand.
This meal has beans and three slices of pita bread.
A sandwich, grapes, and carrots sitting on a plate.
Two meat sandwiches with potato salad on a white plae
A child holds a hot dog in front of her.
Hot dogs and cheeseburger links rotating on a warmer.
Pasta with sauce and vegetables on a plate.
Man about to bite into hot dog with many toppings.
A foam plate with food on it next to a bowl of rice.
A white plate topped with a vegetables salad.
A dog with sleeping with a teddy bear.
A jet in mid air piggybacking the space shuttle on it
A blue plate with separate contains for food on it.
The double decker bus is ready for numerous passengers.
A  bathroom that has white tile floors and walls.
a meat dish with broccoli and peppers on a white plate
cherry tomatoes  and various food dishes on a table top
Two plates of food on a table with a napkin.
The small sandwich appears to have sour cream on it.
A bus with a red stripe is parked on the street.
Two red and white cows in a pasture with a pond.
A blue and yellow train passing under a large tree with factories in ...
A slice of pizza with a bunch of vegetable toppings
A red and white bus driving down a street.
A group of four skiers posing for a picture.

Gourmet hot dogs smothered with sauce on plate.                
A plate of hot dogs and other food.                            
a hot dog topped with tomatoes and peppers with a side of fries
A plate of hotdogs, lettuce and tomatoes next to a cup of beer.
Someone holding a hot dog in their hand.
Too hot dog sitting on top of a red tray with a beer near.
This meal has beans and three slices of pita bread.
A child holds a hot dog in front of her.
A sandwich, grapes, and carrots sitting on a plate.
A slice of pizza with a bunch of vegetable toppings
Man about to bite into hot dog with many toppings.
a meat dish with broccoli and peppers on a white plate
Two meat sandwiches with potato salad on a white plae
Hot dogs and cheeseburger links rotating on a warmer.
A partially eaten sandwich with steak and onions.
A foam plate with food on it next to a bowl of rice.
A sandwich over a box filled with some type of fruit.
A white plate topped with a vegetables salad.
Two plates of food on a table with a napkin.
Pasta with sauce and vegetables on a plate.
The small sandwich appears to have sour cream on it.
A plate filled with food sitting next to three glasses.
Plates of food with fruit and sandwiches and beer
A loaded open sandwich at a dinner table.
A white bowl filled with lots of cherries.
there is a man sitting at a table eating a hot dog
A plate with a hamburger and a salad on it
cherry tomatoes  and various food dishes on a table top
A blue plate with separate contains for food on it.
A couple of lunch containers have healthy food in them.

VSE++: CVSE++:
The baseball player is running for the ball
a soccer player dribbles a ball down a field
Baseball players prepare to react to a pitch.
a couple of baseball players are out on the field
a baseball player on a field with a glove
A baseball playing wearing a catchers mitt on a baseball field
A couple of men on a field playing baseball.
The base runner has taken off, as the baseman waits for the ball.
a baseball player on the pitchers mound
A life-sized wax figure of a baseball player, mid-swing.
Men in uniform standing by some missiles on a table
A man with a bat staring at a ball coming towards him.
A girl getting ready to kick a soccer ball.
a group of baseball players playing baseball on a baseball field
a baseball player with a bat gets ready to see a pitch
A pitcher in a baseball game pitching a baseball.
A baseball player gets ready to swing at the ball.
A baseball player with a catcher's mitt watches during a game.
A guy waits his turn as he watches another skateboarder.
An airshow demands constant practice by experienced pilots.
A blue and white sigh that reads "next exit jeff gordon blvd."
A woman arrives with her shiny black bowling bag
The signal of the electronic walk sign is showing green.
A fenced area with an attached sign housing a zebra.
A man walking in the rain with an umbrella.
A cookie sheet with red sliced tomatoes and a platter of whole ...
A girl waiting to hit the ball off of a tee
A double decker bus parked next to a brick building.
A plate of hotdogs, lettuce and tomatoes next to a cup of beer.
Giant legos being guarded by men in official gear.

a couple of baseball players are out on the field
The baseball player is running for the ball
The base runner has taken off, as the baseman waits for the ball.
a baseball player on a field with a glove
A couple of men on a field playing baseball.
a soccer player dribbles a ball down a field
A baseball player with a catcher's mitt watches during a game.
A life-sized wax figure of a baseball player, mid-swing.
A man with a bat staring at a ball coming towards him.
Baseball players prepare to react to a pitch.
A baseball playing wearing a catchers mitt on a baseball field
a baseball player on the pitchers mound
a group of baseball players playing baseball on a baseball field
A pitcher in a baseball game pitching a baseball.
A guy waits his turn as he watches another skateboarder.
A baseball player gets ready to swing at the ball.
a baseball player with a bat gets ready to see a pitch
The first base coach watches as one of his players is up at bat.
Men in uniform standing by some missiles on a table
a person swinging a baseball bat at a baseball
A baseball player is swinging at a pitch during a game.
A girl waiting to hit the ball off of a tee
A shirtless man with a baseball bat being pitched to.
A boy holding a signed baseball in a baseball mitt
A man playing baseball is holding a bat while a crowd watches.
A man swinging a baseball bat while playing baseball game.
The batter, catcher, and plate umpire are fixed on the pitcher.
A young woman sitting on the bleachers with a ball
Player taking swing at ball with umpire standing behind catcher ...
A girl getting ready to kick a soccer ball.

people surfing and getting ready to surf in the water             
A group of people are surfing in the oceans water.                
A surfer on top of wave as it breaks                             
a person on a surfboard riding on a wave                          
A person riding a surfboard in the ocean.
A person on a surfboard riding a wave.                            
A father and son ride waves while using a body board in the ocean.
A man that is standing on a surfboard in the water.               
A person on a surfboard in the water.                            
A man riding a wave on top of a surfboard.
A man riding a wave on top of a surfboard.                       
Dude out in the ocean riding a wave on his surfboard              
A surfer riding a wave on the ocean.                              
A man plays in the water at the beach.                            
A man water skiing using a single ski.
Two pictures of different women professional tennis players.      
A group of people in wet suits with surfboards on a beach.        
Some people water sailing on a lake and a boat.                   
The surfers are parasailing in the ocean with kites.              
A man rubbing a surfboard while another watches.
Group of surfers walking towards the water at sundown.            
Four boys walking to a beach with their surfboards.               
A man is riding a surboard on a wave                              
A woman is on the television screen on a cabinet next to a desk.  
Near the surf, a man sits hunched over on his board.
Two pretty little girls laying in bed next to each together.      
Three zebras walking a straight line through an open field.       
A family making a cake together in the kitchen.                   
Men in Black shorts in yellow vest writing on skis.               
two laptops sitting next to each other on a desk

A group of people are surfing in the oceans water.
people surfing and getting ready to surf in the water
A surfer on top of wave as it breaks
A person riding a surfboard in the ocean.
A person on a surfboard in the water.
A father and son ride waves while using a body board in the ocean.
Dude out in the ocean riding a wave on his surfboard
A person on a surfboard riding a wave.
a person on a surfboard riding on a wave
A man riding a wave on top of a surfboard.
A man riding a wave on top of a surfboard.
A man that is standing on a surfboard in the water.
A surfer riding a wave on the ocean.
A man is riding a surboard on a wave
The surfers are parasailing in the ocean with kites.
Group of surfers walking towards the water at sundown.
A man rubbing a surfboard while another watches.
A man water skiing using a single ski.
Some people water sailing on a lake and a boat.
A young man jumping into the water
Near the surf, a man sits hunched over on his board.
A man plays in the water at the beach.
The surfers are walking on the beach at night.
A group of people in wet suits with surfboards on a beach.
Four boys walking to a beach with their surfboards.
Three people sitting on a bench looking at the ocean.
Four guys are having a good time snowboarding.
A few young people on a ski slope having a lot of fun.
People are para-sailing in the waters off this shoreline; a city ...
Woman in a blue shirt and black shorts kneeling beside a surfboard.

VSE++: CVSE++:

VSE++: CVSE++: VSE++: CVSE++:
A cake covered in gummy bears next to a spoon.
A sandwich, grapes, and carrots sitting on a plate.
a journal, notebook, keys, book and backpack on a beige couch
Different candies and treats line the interior of a suitcase.
A couple is flying a kit on a beach.
A bunch of toothbrushes and toothpaste that is on a counter.
a keyboard attached to a cell phone on a table
a decorative umbrella and various other items on display
Small metal grill with assortment of cookies being adorned.
A blue and white toothbrush and toothpaste on a shelf
A man wearing eyeglasses, a scarf, and tie on a mobile phone.
White keyboard with large clean letters on it.
A motor cycle riding on the street with # 6 on the fork.
A person reaching out and cutting a cake.
A slice of pizza with a bunch of vegetable toppings
A dessert with chocolate and banana slices sits on a plate.
Mr. and Mrs. Santa Clause standing on the side of a road as Santa points ....
Three stuffed bears laying on a bed next to a stuffed frog.
A close up of three cakes singing best wishes.
A blue plate with separate contains for food on it.
A small plate of pizza and some tea.
the pizza has cheese, tomato sauce, and olives
A white bowl filled with lots of cherries.
A metal platter topped with fish and vegetables.
a small vase with many flowers inside
The batter, catcher, and plate umpire are fixed on the pitcher.
A dog is wearing a party hat amidst confetti.
Many decorations hanging up in front of the beach.
A man pressing buttons on his cell phone.
A red and white bus driving down a street.

A cake covered in gummy bears next to a spoon.
Different candies and treats line the interior of a suitcase.
A sandwich, grapes, and carrots sitting on a plate.
A close up of three cakes singing best wishes.
A slice of pizza with a bunch of vegetable toppings
A small plate of pizza and some tea.
A person reaching out and cutting a cake.
A few sliced of olive pizza sitting on a white plate.
a doughy treat with some sugar sprinkled on it
A dessert with chocolate and banana slices sits on a plate.
a decorative umbrella and various other items on display
there is a small white pizza that is on a small plate
Two women decorated a cake to look like a minion from Despicable Me.
A thin crust pizza is topped with olives and onions.
A young boy beside a donut with white frosting and sprinkles.
A white bowl filled with lots of cherries.
the pizza has cheese, tomato sauce, and olives
a couple holding a knife together as they cut a cake
Small metal grill with assortment of cookies being adorned.
a person is eating a pizza with a fork
Many decorations hanging up in front of the beach.
This meal has beans and three slices of pita bread.
Pasta with sauce and vegetables on a plate.
Two photos, each with pizzas, one ham and cheese, one supreme.
A pizza and tea kettle sitting on a stove.
cherry tomatoes  and various food dishes on a table top
A birthday cake for a one-year old that has a big teddy bear on it.
There are many kids at a party where there is cake.
a cheese pizza cut into slices on a table
An arrangement of cut vegetables on a cutting board.

Fig. 5. Comparison of image-to-sentence top-30 retrieval results between VSE++ (baseline) and CVSE++ (ours). Each query image is shown on the left; and
the top-30 retrieval sentences are listed on the right. Totally-relevant and totally-irrelevant sentences are highlighted in blue and red color, respectively. It is
clear that both methods retrieve the totally-relevant sentences at high ranking positions, but the baseline VSE++ method includes much more totally-irrelevant
sentences in the top-30 results; while our proposed CVSE++ method mitigates such problem. Figure best viewed in color.

discordant pairs, T,U the numbers of ties only in r1, r2, . . . , rK
or e1, e2, . . . , eK , respectively.

When τ = 1, the alignment is perfect, i.e. the two ranking
lists are identical. Thus, a high CS@K score indicates the
good quality and good user experience of the learnt embedding
space and retrieval result in terms of coherence, and a model
that achieves high CS@K score is expected to perform better
in long-tail query challenges [9] where a perfect match to the
query does not necessarily exist in the database.

It is noted that, although the two metrics, i.e., CS@K and
R@K peak at the same time in the ideal case, they are reflecting
different aspects of the ranking result, and are not positively
correlated. The R@K is purely based on the ranking position
of the ground-truth candidates, while neglecting the ranking
order of all other candidates (described in the third paragraph
in Section I). Thus, the R@K is invariant to the order among
non-ground-truth samples. Besides, the CS@K measures the
alignment between the real ranking order and the expected
ranking order. The position of the ground-truth candidate is
merely a small fraction of the ranking order which decides the

CS@K value, and the CS@K can be invariant to the ground-
truth candidate in some cases.

Such invariance can be demonstrated with examples. Assume
that we have a set of sentences {h1, h2, h3, h4, h5}. Given
an image embedding vq, the ideal ranking order among the
sentences is “h1, h2, h3, h4, h5”, where both CS@5= 1.0
and R@1= 100 reach the maximum value. When the real
ranking list is “h1, h5, h4, h3, h2” or “h1, h2, h3, h4, h5”, the
corresponding (R@1, CS@5) values are (100, -0.2) or (100,
1.0), respectively. The previous ranking list is badly ordered,
while the latter one is coherent, but both lists reach the highest
R@K value. When the real ranking list is “h2, h1, h3, h4, h5”
or “h1, h3, h2, h4, h5”, the corresponding (R@1, CS@5) values
are (0, 0.8) or (100, 0.8), respectively. Both lists are somewhat
coherent, only containing one reversed pair compared to the
ideal order, and hence achieve the same CS@5. However,
their R@1 varies. In brief, the two metrics are not positively
correlated, and are revealing different aspects of the ranking
result.
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TABLE I
COMPARISON BETWEEN VSE++ AND CVSE++ IN TERMS OF CS@K AND R@K ON MS-COCO DATASET.

MS-COCO Dataset (1000 Test Samples)

Model Image→Sentence Sentence→Image
CS@100 CS@1000 Mean R R@1 R@5 R@10 CS@100 CS@1000 Mean R R@1 R@5 R@10

Random 0.018 0.009 929.9 0.0 0.3 0.5 0.044 0.005 501.0 0.1 0.5 0.9
VSE++ (VGG19) 0.264 0.073 4.3 56.0 84.0 92.0 0.268 0.077 10.1 42.5 78.0 88.0

CVSE++ (VGG19, [10]) 0.281 0.175 3.7 56.5 85.1 92.9 0.273 0.178 7.3 43.0 78.8 88.7
CVSE++ (VGG19) 0.299 0.234 3.9 57.0 84.6 92.7 0.291 0.232 9.3 42.5 76.8 87.3
CVSE++ (VGG19, Auto) 0.300 0.208 4.2 56.8 83.3 93.1 0.293 0.200 9.5 41.5 77.6 87.5

VSE++ (VGG19, FT) 0.285 0.104 2.9 61.6 89.5 95.5 0.284 0.108 6.7 50.1 84.1 92.0
CVSE++ (VGG19, FT, [10]) 0.313 0.206 2.8 63.1 89.5 96.3 0.293 0.214 5.3 50.3 84.6 92.5
CVSE++ (VGG19, FT) 0.316 0.292 3.0 63.6 90.0 96.2 0.295 0.283 6.3 50.0 83.7 92.0
CVSE++ (VGG19, FT, Auto) 0.331 0.283 3.1 63.2 89.0 95.5 0.313 0.270 6.2 49.5 84.8 92.3

VSE++ (Res152) 0.264 0.107 3.0 63.4 87.7 95.6 0.263 0.112 7.7 47.6 80.3 90.1
CVSE++ (Res152, [10]) 0.290 0.192 2.9 66.5 89.0 95.2 0.278 0.196 6.0 48.6 80.5 90.5
CVSE++ (Res152) 0.301 0.265 3.1 65.2 88.6 95.0 0.292 0.266 6.9 48.3 79.8 89.3
CVSE++ (Res152, Auto) 0.305 0.236 3.1 64.7 88.1 95.2 0.295 0.229 7.1 47.2 79.1 89.5

VSE++ (Res152, FT) 0.263 0.099 2.4 67.8 91.1 96.5 0.262 0.103 6.4 53.8 85.1 92.1
CVSE++ (Res152, FT, [10]) 0.308 0.205 2.4 69.3 92.5 97.0 0.292 0.219 4.4 55.4 86.3 93.8
CVSE++ (Res152, FT) 0.310 0.303 2.3 68.5 93.0 97.1 0.292 0.295 5.4 54.4 84.9 92.6
CVSE++ (Res152, FT, Auto) 0.313 0.292 2.5 68.0 91.7 96.0 0.297 0.292 5.4 53.6 85.7 93.1

MS-COCO Dataset (5000 Test Samples)

Model Image→Sentence Sentence→Image
CS@500 CS@5000 Mean R R@1 R@5 R@10 CS@500 CS@5000 Mean R R@1 R@5 R@10

VSE++ (Res152) 0.254 0.109 11.0 36.3 65.9 78.6 0.235 0.113 29.6 25.5 53.5 66.5
CVSE++ (Res152, [10]) 0.278 0.194 10.5 39.3 68.0 79.9 0.252 0.195 24.1 25.5 53.5 66.7
CVSE++ (Res152) 0.292 0.263 11.4 39.0 67.1 79.1 0.267 0.264 29.1 25.1 52.8 65.5
CVSE++ (Res152, Auto) 0.293 0.235 11.5 38.8 65.8 79.0 0.283 0.226 30.0 24.4 52.5 65.1

VSE++ (Res152, FT) 0.253 0.099 8.6 41.4 72.0 82.5 0.252 0.101 24.9 31.4 60.7 73.5
CVSE++ (Res152, FT, [10]) 0.294 0.203 7.6 43.3 74.3 83.9 0.283 0.217 16.9 32.2 62.0 74.5
CVSE++ (Res152, FT) 0.300 0.301 8.3 43.0 73.6 83.5 0.288 0.290 20.7 31.4 61.1 73.8
CVSE++ (Res152, FT, Auto) 0.302 0.289 8.1 42.6 72.5 83.2 0.288 0.287 21.1 31.3 60.8 73.3

IV. EXPERIMENTS

A. Datasets & Implementation Detail

Following related works, Flickr30K [49] and MS-
COCO [50], [51] datasets are used in our experiments. The two
datasets contain 31, 000 and 123, 000 images, respectively, and
each image within them is annotated with 5 sentences using
AMT. For Flickr30K, we use 1, 000 images for validation,
1, 000 for testing and the rest for training, which is consistent
with [5]. For MS-COCO, we also follow [5] and use 5, 000 im-
ages for both validation and testing. Meanwhile, the rest 30, 504
images in original validation set are used for training (113, 287
training images in total) in our experiments following [5].
Our experimental settings follow that in VSE++ [5], which
is the state-of-the-art for visual-semantic embedding. Note, in
terms of image-sentence matching, SCAN [52] achieves better
performance, but it does not learn a joint embedding space for
full sentences and full images, and suffers from combinatorial
explosion in the number of sample pairs to be evaluated.

VGG-19 [53] or ResNet-152 [54]-based image representation
is used for our experiments (both pre-trained on ImageNet). Fol-
lowing common practice, we extract 4096 or 2048-dimensional
feature vectors directly from the penultimate fully connected
layer from these networks. We also adopt random cropping
in data augmentation, where all images are first resized to
256 × 256 and randomly cropped 10 times at 224 × 224
resolution. For the sentence representation, we use a Gated
Recurrent Unit (GRU), similar to the one used in [5]. The
dimension of the GRU and the joint embedding space is set at

TABLE II
PERFORMANCE OF DIFFERENT METHODS ON STS-B BENCHMARK.

Method Score on STS-B

CBoW 0.586
BERT [40] 0.865

BERT (Reproduced) [10] 0.880
Hybrid (CBoW+BERT) [10] 0.790

Sentence-BERT [11] 0.861

D = 1024. The dimension of the word embeddings used as
input to the GRU is set to 300.

When evaluating the CS@K scores, we exclusively use
the relevance degrees to determine the reference ranking list.
Additionally, Adam solver is used for optimization, with the
learning rate set at 2e-4 for 15 epochs, and then decayed to
2e-5 for another 15 epochs. We use a mini-batch of size 128
in all experiments in this paper. Our algorithm is implemented
in PyTorch [55]. When being manually selected, the ladder
number L is set as 2 if not mentioned, while the threshold θ1
for splitting N−q

1 and N−q
2 is fixed at 0.63 [10] for the “hybrid”

relevance degree, or at 0.40 for the Sentence-BERT relevance
degree. Accordingly, the margins and the loss weights are set
as α1 = 0.2, α2 = 0.01, β1 = 1, β2 = 0.25, respectively.
When the ladder number L is selected adaptively, its lower
and upper bound (LMIN, LMAX) are set as (2, 4) otherwise
mentioned. Accordingly, the margins are set as α1 = 0.2 and
αi = 0.01(i ∈ {2, 3, 4}), while the loss weights are set as

 



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2021.3139210, IEEE
Transactions on Multimedia

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. XX, XX XXXX 9

β1 = 1.0 and βi = 1/2i(i ∈ {2, 3, 4}).

B. Relevance Degree

As pointed out by [11], [10], the BERT inference is highly
computational expensive. To alleviate this, we introduce a
“hybrid” mechanism by combining CBoW and BERT in the
conference version of this paper [10]. Although it achieves a
relatively high performance on the standard benchmark, the
fact that the relevance degrees by CBoW and that of BERT
follow different distributions means such “hybrid” supervision
information may introduce noise into the training process. In
this paper, we employ Sentence-BERT [11] as described in
Section III-A. It greatly reduces the effort for finding the
similarity matrices for our sentences, while maintaining the
accuracy from a fine-tuned BERT.

Specifically, the performance of these methods on the STS-B
benchmark is summarized in Table. II. In terms of learning a
coherent visual semantic embedding space, Sentence-BERT is
expected to be effective due to its competitive performance on
this benchmark. Moreover, it provides more accurate relevance
degrees compared to the “hybrid” mechanism used in [10].

Time consumption for calculating relevance degrees dif-
fers across these methods. Since the mini-batch size is set
to 128 throughout all experiments, every iteration in the
training process of CVSE++ involves the calculation of a
pairwise relevance degree matrix of size 128× 128. We have
measured the time consumption of every method used in
our experiments for such relevance degree matrix calculation
with Python cProfile. Our hardware platform consists of two
Intel Xeon 6226R CPUs and 8 Nvidia RTX3090 GPUs.
During our experiments, the average time consumption for
an 128 × 128 relevance degree is 7.38 × 10−4 second with
CBoW; 1.01×10−3 second with Sentence-BERT (the sentence
representation vectors are pre-calculated); 1.18 × 101 with
“hybrid” CBoW+BERT mechanism [10]. As discussed in [10],
solely using BERT for relevance degree is infeasible due to
excessive time consumption. In contrast, the VSE++ method
does not need such matrix, and hence can finish the training
epochs in relatively less time. However, CVSE++ achieves a
much better coherence in the visual semantic embedding space
at an acceptable computation cost.

C. Results on MS-COCO

We compare VSE++ (re-implemented) and our Coherent
Visual-Semantic Embedding (CVSE++) on the MS-COCO
dataset, where VSE++ only focuses on the ranking position
of the totally-relevant candidates while our approach cares
about the ranking order of all Top-N candidates. The method
of VSE++ [5] is our baseline since it is the state-of-the-art
approach for learning visual-semantic embedding. For fair
comparison, we use both Recall@K (denoted as “R@K”) and
CS@K as metrics for evaluation, and also fine-tune (denoted
by “FT”) the CNNs following the baseline. In our approach,
the hard contrastive sampling strategy is used. Experiments
without the hard negative or hard contrastive sampling strategy
are omitted because they perform much worse in terms of
R@K, as reported in [5].

In our approach, the ladder number L can be decided either
manually or adaptively. When manually specifying the ladder
number L in the loss function, it depends on how many top-
ranked candidates (the value of N ) we care about (i.e., termed
the scope-of-interest in this paper). With a small scope-of-
interest, e.g., top-100, only a few ladders are required, e.g.,
L = 2; but with a larger scope-of-interest, e.g., top-200, we
will need more ladders, e.g., L = 3, so that the low-level
ladder, e.g., L2

lad(q) in Eq. (6), is responsible for optimizing
the ranking order of the very top candidates, e.g., top-1 ∼
top-100; while the high-level ladder, e.g., L3

lad(q) in Eq. (6),
is responsible for optimizing the ranking order of subsequent
candidates, e.g., top-100 ∼ top-200.

A detailed discussion regarding the scope-of-interest and
the choice of ladder number L will be provided in the next
section. Practically, we limit our illustrated results to L = 2
both for computational savings and for the limited scope-of-
interest from most human users. With ladder number L fixed
at 2, parameters can be empirically determined by exploiting
the validation set, e.g., the threshold θ1 for splitting N−q

1 and
N−q

2 is fixed at 0.40, and the margins α1 = 0.2, α2 = 0.01,
the loss weights β1 = 1, β2 = 0.25.

With our proposed CS@K metric, significantly larger K
values are chosen than those (e.g., 1, 5, 10) in the classical R@K
metric. For instance, we report the CS@100 and CS@1000 with
1000 test samples. Such choices of K allow more insights into
both the local and global order-preserving effects in embedding
space. In addition, the conventional R@K metrics are also
included to measure the ranking performance of the totally-
relevant candidates.

The experimental results on the MS-COCO dataset are
presented in Table I, where the proposed CVSE++ ap-
proaches evidently outperform their corresponding VSE++
counterparts in terms of CS@K, e.g., from VSE++(Res152):
0.264 to CVSE++(Res152): 0.301 in terms of CS@100 for
image→sentence retrieval with 1000 MS-COCO test sam-
ples. Moreover, the performance improvements are more
significant with the larger scope-of-interest at CS@1000,
e.g., where “CVSE++ (Res152,FT)” achieves over 3-fold
increase over “VSE++ (Res152,FT)” (from 0.099 to 0.303)
in image→sentence retrieval. We also provide results of
models trained using the relevance degree in the conference
version [10] but evaluated using the relevance degree discussed
in Section III-A, e.g., that of “CVSE++ (Res152, [10])”. As
expected, since the adaptive ladder loss can better exploit the
training data, it achieves higher CS@100 in most cases, for
instance, from 0.316 of CVSE++ (VGG19,FT) to 0.331 of
CVSE++ (VGG19,FT,Auto) for image-to-sentence retrieval.
The result indicates that with our proposed ladder loss a
coherent embedding space could be effectively learnt, which
could produce significantly better ranking results especially in
the global scope. Moreover, the proposed adaptive ladder loss
could further boost the coherence of the learned embedding
space in a local scope (i.e., in terms of CS@100), while the
ladder loss with a manually selected ladder level L is still
better at maintaining coherence from the global scope (i.e. in
terms of CS@1000).

Simultaneously, a less expected phenomenon can be ob-
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TABLE III
COMPARISON BETWEEN VSE++ AND CVSE++ IN TERMS OF CS@K AND R@K ON FLICKR30K DATASET.

Model Image→Sentence Sentence→Image
CS@100 CS@1000 Mean R R@1 R@5 R@10 CS@100 CS@1000 Mean R R@1 R@5 R@10

Random 0.02 -0.005 988.3 0.0 0.3 0.4 -0.033 -0.003 503.0 0.2 0.6 1.1
VSE++ (VGG19) 0.160 0.172 17.4 40.6 68.7 78.3 0.153 0.157 28.3 28.1 58.0 69.9

CVSE++ (VGG19, [10]) 0.162 0.158 16.5 42.5 69.5 79.3 0.160 0.171 25.8 28.4 58.8 70.6
CVSE++ (VGG19) 0.167 0.215 19.2 40.2 68.9 78.2 0.161 0.206 28.6 27.6 57.9 68.8
CVSE++ (VGG19, Auto) 0.170 0.184 19.7 39.7 67.3 77.5 0.161 0.175 29.9 27.3 57.5 69.4

VSE++ (VGG19, FT) 0.169 0.177 13.9 44.7 73.2 81.7 0.166 0.176 22.2 32.1 63.2 74.1
CVSE++ (VGG19, FT, [10]) 0.178 0.183 12.5 44.8 73.8 84.3 0.173 0.183 19.8 34.6 65.7 76.5
CVSE++ (VGG19, FT) 0.187 0.222 14.1 43.8 72.6 81.0 0.173 0.219 22.5 32.9 63.3 73.4
CVSE++ (VGG19, FT, Auto) 0.189 0.211 15.2 43.1 72.1 82.3 0.178 0.205 21.8 32.3 64.0 74.6

VSE++ (Res152) 0.165 0.166 10.8 48.9 77.8 86.5 0.160 0.165 20.6 36.0 65.8 75.4
CVSE++ (Res152, [10]) 0.166 0.178 9.1 50.9 79.6 87.8 0.161 0.178 19.8 37.3 67.1 76.7
CVSE++ (Res152) 0.168 0.216 11.3 48.9 77.8 86.7 0.163 0.210 21.0 36.1 66.3 75.5
CVSE++ (Res152, Auto) 0.171 0.195 10.7 49.3 77.2 86.3 0.164 0.188 21.8 36.0 65.4 76.2

VSE++ (Res152, FT) 0.173 0.189 7.8 54.4 81.2 89.3 0.166 0.190 16.5 40.2 70.1 79.6
CVSE++ (Res152, FT, [10]) 0.175 0.194 6.7 56.2 82.4 90.8 0.167 0.196 15.4 42.7 71.8 80.3
CVSE++ (Res152, FT) 0.183 0.211 7.7 56.5 82.8 90.1 0.172 0.214 15.9 41.7 71.1 80.0
CVSE++ (Res152, FT, Auto) 0.186 0.235 8.1 57.7 84.7 91.1 0.176 0.234 15.5 41.9 72.7 81.5

TABLE IV
PERFORMANCE OF THE PROPOSED CVSE++(RES152) WITH RESPECT TO THE PARAMETER β2 (ON MS-COCO DATASET).

Ladder Selection β2
Image→Sentence Sentence→Image

CS@100 CS@1000 Mean R R@1 R@5 R@10 CS@100 CS@1000 Mean R R@1 R@5 R@10

Manual 0.00 0.264 0.107 3.0 63.4 87.7 95.6 0.263 0.112 7.7 47.6 80.3 90.1
Manual 0.25 0.301 0.265 3.1 65.2 88.6 95.0 0.292 0.266 6.9 48.3 79.8 89.3
Manual 0.50 0.328 0.269 4.0 55.5 84.0 91.7 0.283 0.287 8.1 42.6 76.7 87.7

Auto (2, 2) 0.00 0.264 0.107 3.0 63.4 87.7 95.6 0.263 0.112 7.7 47.6 80.3 90.1
Auto (2, 2) 0.25 0.302 0.239 3.2 60.3 87.3 95.1 0.296 0.230 7.2 45.4 79.4 89.7
Auto (2, 2) 0.50 0.300 0.205 6.5 49.4 75.7 84.6 0.300 0.223 9.0 36.9 72.0 83.7

TABLE V
PERFORMANCE OF THE PROPOSED CVSE++(RES152) WITH RESPECT TO THE PARAMETER β2 (ON FLICKR30K DATASET).

Ladder Selection β2
Image→Sentence Sentence→Image

CS@100 CS@1000 Mean R R@1 R@5 R@10 CS@100 CS@1000 Mean R R@1 R@5 R@10

Manual 0.00 0.165 0.166 10.8 48.9 77.8 86.5 0.160 0.165 20.6 36.0 65.8 75.4
Manual 0.25 0.168 0.216 11.3 48.9 77.8 86.7 0.163 0.210 21.0 36.1 66.3 75.5
Manual 0.50 0.185 0.211 15.4 43.4 72.2 81.8 0.162 0.219 21.9 33.6 64.1 74.8

Auto (2, 2) 0.00 0.165 0.166 10.8 48.9 77.8 86.5 0.160 0.165 20.6 36.0 65.8 75.4
Auto (2, 2) 0.25 0.170 0.192 11.3 49.2 75.7 85.9 0.166 0.187 21.3 35.2 65.4 75.9
Auto (2, 2) 0.50 0.163 0.198 14.6 37.3 67.8 79.6 0.167 0.172 29.5 26.9 58.0 70.0

served from Table I: our proposed CVSE++ variants achieve
roughly comparable or marginally better performance than
their VSE++ counterparts in terms of R@K, e.g., from
VSE++(Res152): 63.4 to CVSE++(Res152): 65.2 in terms
of R@1 for image→sentence retrieval with 1000 MS-COCO
test samples. The overall improvement in R@K is insignificant
because it completely neglects the ranking position of those
non-ground-truth samples, and CVSE++ is not designed for
improving the ranking for ground-truth. Based on these results,
we speculate that the ladder loss appears to be beneficial (or at
least not harmful) to the inference of totally-relevant candidates.

To provide some visual comparison between VSE++ and
CVSE++, several sentences are randomly sampled from the
validation set as queries, and their corresponding retrievals are
illustrated in Figure 4 (sentence→image). Similarly, we also
randomly sample several images from the dataset, and showcase
the top-30 retrieved sentences in Figure 5 (image→sentence).

From the figures, it is clear that both methods, i.e., VSE++
and CVSE++ (ours) can rank the ground-truth (totally-relevant)
sample on the very top part of the list. However, VSE++
treats non-ground-truth samples as totally-irrelevant candidates
and learns an incoherent embedding space, hence resulting in
obviously more totally-irrelevant samples in the top-30 retrieval
list. In contrast, our CVSE++ retrieves less totally-irrelevant
samples, and most of the retrieved samples are still somewhat
related to the ground-truth. For instance, in the first example of
Figure 4 where the sentence is “a herd of elephants standing
on the side of a grass covered hill”, the retrieval results of
VSE++ includes images of food (e.g., donuts), snow-covered
mountains, trains, etc., which are totally-irrelevant to the query
sentence. With the same query sentence, nearly all the retrieval
results from CVSE++ match at least one of the following keys:
“elephants”, “animal standing somewhere”, and “grass hill”.
Unlike VSE++, our learned embedding space is more coherent.

 



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2021.3139210, IEEE
Transactions on Multimedia

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. XX, XX XXXX 11

TABLE VI
PERFORMANCE OF THE PROPOSED CVSE++(RES152) WITH RESPECT TO THE LADDER NUMBER L. (ON MS-COCO DATASET)

L Image→Sentence Sentence→Image
CS@100 CS@200 CS@1000 Mean R R@1 R@5 R@10 CS@100 CS@200 CS@1000 Mean R R@1 R@5 R@10

1 0.264 0.214 0.107 3.0 63.4 87.7 95.6 0.263 0.216 0.112 7.7 47.6 80.3 90.1
2 0.301 0.273 0.265 3.1 65.2 88.6 95.0 0.292 0.251 0.266 6.9 48.3 79.8 89.3
3 0.298 0.288 0.278 3.7 62.0 88.0 94.4 0.279 0.260 0.281 7.7 46.8 78.5 89.0

TABLE VII
PERFORMANCE OF THE PROPOSED CVSE++(RES152) WITH RESPECT TO THE LADDER NUMBER L. (ON FLICKR30K DATASET)

L Image→Sentence Sentence→Image
CS@100 CS@200 CS@1000 Mean R R@1 R@5 R@10 CS@100 CS@200 CS@1000 Mean R R@1 R@5 R@10

1 0.165 0.151 0.166 10.8 48.9 77.8 86.5 0.160 0.149 0.165 20.6 36.0 65.8 75.4
2 0.168 0.161 0.216 11.3 48.9 77.8 86.7 0.163 0.156 0.210 21.0 36.1 66.3 75.5
3 0.172 0.175 0.216 12.5 47.7 76.4 85.3 0.160 0.164 0.215 21.1 35.7 65.6 75.4

Similarly, the first example in Figure 5 also suggest that nearly
all the retrieval results from our coherent embeddings match
at least one of these key words: “elephant”, “animal standing
somewhere”, “grass hill or grass field”. Evidently, our CSVE++
can put more somewhat-relevant candidates and reduce the
number of totally-irrelevant candidates on the top-N retrieval
list and enhance user experience.

D. Results on Flickr30K

Our approach is also evaluated on the Flikr30K dataset
and compared with the baseline VSE++ variants, as shown in
Table III. The hyper-parameter settings are identical to that in
Table I with MS-COCO (1000 Test Samples). As expected,
these experimental results demonstrate similar performance
improvements both in terms of CS@K and R@K by our
proposed CVSE++ variants.

V. PARAMETER SENSITIVITY ANALYSIS AND DISCUSSIONS

In this section, parameter sensitivity analysis is carried out on
two groups of hyper-parameters, i.e., the balancing parameter
β1, β2, · · · , βL in Eq. (6), the ladder number L, as well as the
(LMIN, LMAX) parameters.

A. Balancing Totally Relevant and Others

In Eq. (6), the weights between the ranking position
optimization of totally-relevant candidates and other candidates
in the ladder loss are controlled by the hyper-parameters
β1, β2, · · · , βL. With β2 = · · · = βL = 0, the ladder loss
degenerates to the triplet loss, and all emphasis is put on the
totally-relevant ones. Conversely, relatively larger β2, · · · , βL

values put more emphasis on the somewhat-relevant candidates.
With other parameters fixed (L fixed at 2, β1 fixed at 1),

parameter sensitivity analysis is carried out on β2 only. From
Table IV and Table V, we can see that CS@K metrics improve
with larger β2, but R@K metrics degrade when β2 is close to
0.5. Based on the three β2 settings in Table IV and Table V, we
speculate that CS@K and R@K metrics would not necessarily
peak simultaneously at the same β2 value for both manually
selected L (denoted as “Manual”) and adaptively selected one

(denoted as “Auto (2,2)”). We also observe that with excessively
large β2 values, the R@K metrics drop dramatically. Generally,
the ranking orders of the totally-relevant candidates often catch
user’s attention and they should be optimized with high priority.
Therefore, we select β2 = 0.25 in all our other experiments to
strike a balance because of R@K and CS@K performance.

B. The Scope-of-interest for Ladder Loss

Our approach focuses on improving the ranking order of
all top-N retrieved results (instead of just the totally-relevant
ones). Thus, there is an important parameter, i.e., the scope-of-
interest N or the size of the desired retrieval list. If the retrieval
system user only cares about a few top-ranked results (e.g.,
top-100), two ladders (e.g., L = 2) are practically sufficient;
If a larger scope-of-interest (e.g., top-200) is required, more
ladders are probably needed in the ladder loss. For example,
with L = 3, the low-level ladder L2

lad(q) is responsible for
the optimization of the ranking order of very top candidates,
e.g., from top-1 ∼ top-100; while the high-level ladder L3

lad(q)
is responsible for the optimization of the ranking order of
subsequent candidates, e.g., from top-100 ∼ top-200. Inevitably,
a very large ladder number results in high computational
complexity. Therefore, a compromise between the scope-of-
interest and the computational complexity needs to be reached.

For the sensitivity analysis of ladder number L = 1, 2, 3,
we evaluate our CVSE++ (Res152) approach by comparing
top-100, top-200 and top-1000 results, which are measured
by CS@100, CS@200 and CS@1000, respectively. Other
parameters θ2, α3, β3 are empirically fixed at 0.35, 0.01,
0.125, respectively. The experimental results are summarized in
Table VI and Table VII. With small scope-of-interest N = 100,
we find that two ladder L = 2 is effective to optimize
the CS@100 metric, a third ladder only incurs marginal
improvements. However, with larger scope-of-interest, e.g.,
top-200, the CS@200 can be further improved by adding one
more ladder, i.e., L = 3.

Apart from that, a notable side effect with too many ladders
(e.g. 5) can be observed, the R@K performance drops evidently.
We speculate that with more ladders, the ladder loss is likely
to be dominated by high-level ladder terms and leads to some
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TABLE VIII
PERFORMANCE OF THE PROPOSED CVSE++(RES152, AUTO) WITH RESPECT TO THE K-MEANS LOWER/UPPER BOUNDS. (ON MS-COCO DATASET)

(LMIN, LMAX) Image→Sentence Sentence→Image
CS@100 CS@1000 Mean R R@1 R@5 R@10 CS@100 CS@1000 Mean R R@1 R@5 R@10

(1, 1) 0.264 0.107 3.0 63.4 87.7 95.6 0.263 0.112 7.7 47.6 80.3 90.1
(2, 2) 0.302 0.239 3.2 60.3 87.3 95.1 0.296 0.230 7.2 45.4 79.4 89.7
(3, 3) 0.301 0.253 3.4 60.1 87.8 94.1 0.295 0.247 7.5 44.2 78.6 88.9
(4, 4) 0.306 0.253 3.1 60.8 88.0 94.4 0.297 0.250 7.4 45.2 79.1 88.8
(5, 5) 0.301 0.253 3.3 60.4 88.5 94.9 0.298 0.246 7.5 45.6 79.2 89.3
(2, 3) 0.303 0.238 3.3 61.8 87.2 95.0 0.295 0.229 7.3 46.4 79.2 89.4
(2, 4) 0.305 0.236 3.1 64.7 88.1 95.2 0.295 0.229 7.1 47.2 79.1 89.5
(2, 5) 0.300 0.237 3.4 59.6 88.7 94.6 0.295 0.229 7.2 46.8 78.9 89.3

TABLE IX
PERFORMANCE OF THE PROPOSED CVSE++(RES152, AUTO) WITH RESPECT TO THE K-MEANS LOWER/UPPER BOUNDS. (ON FLICKR30K DATASET)

(LMIN, LMAX) Image→Sentence Sentence→Image
CS@100 CS@1000 Mean R R@1 R@5 R@10 CS@100 CS@1000 Mean R R@1 R@5 R@10

(1, 1) 0.165 0.166 10.8 48.9 77.8 86.5 0.160 0.165 20.6 36.0 65.8 75.4
(2, 2) 0.170 0.192 11.3 49.2 75.7 85.9 0.166 0.187 21.3 35.2 65.4 75.9
(3, 3) 0.162 0.203 11.5 48.1 74.9 84.2 0.165 0.196 21.8 33.0 64.2 74.8
(4, 4) 0.166 0.205 10.9 47.7 76.0 85.6 0.167 0.199 21.5 35.0 65.4 75.6
(5, 5) 0.168 0.201 10.8 47.9 75.2 85.4 0.166 0.194 21.6 36.1 65.1 75.9
(2, 3) 0.168 0.196 10.4 49.1 76.1 85.8 0.166 0.190 20.3 35.6 65.9 76.4
(2, 4) 0.171 0.195 10.7 49.3 77.2 86.3 0.164 0.188 21.8 36.0 65.4 76.2
(2, 5) 0.164 0.197 12.2 48.2 76.7 84.9 0.163 0.193 20.1 35.4 65.3 76.0

TABLE X
ADAPTIVE LADDER LOSS WITH HYBRID (CBOW+BERT) RELEVANCE DEGREE ON MS-COCO DATASET (1000 TEST SAMPLES).

MS-COCO Dataset (1000 Test Samples)

Model Image to Sentence Sentence to Image
CS@100 CS@1000 Mean R R@1 R@5 R@10 CS@100 CS@1000 Mean R R@1 R@5 R@10

CVSE++ (VGG19, [10]) 0.281 0.175 3.7 56.5 85.1 92.9 0.273 0.178 7.3 43.0 78.8 88.7
CVSE++ (VGG19, [10], Auto) 0.295 0.145 4.0 56.2 84.5 92.6 0.294 0.148 8.8 42.9 78.0 88.0
CVSE++ (Res152, [10]) 0.290 0.192 2.9 66.5 89.0 95.2 0.278 0.196 6.0 48.6 80.5 90.5
CVSE++ (Res152, [10], Auto) 0.302 0.166 3.1 64.3 88.3 94.4 0.292 0.170 7.2 46.9 79.2 89.6

Flickr30K Dataset
CVSE++ (VGG19, [10]) 0.162 0.158 16.5 42.5 69.5 79.3 0.160 0.171 25.8 28.4 58.8 70.6
CVSE++ (VGG19, [10], Auto) 0.166 0.144 16.7 39.5 67.6 78.4 0.161 0.146 29.4 27.8 57.1 68.6
CVSE++ (Res152, [10]) 0.166 0.178 9.1 50.9 79.6 87.8 0.161 0.178 19.8 37.3 67.1 76.7
CVSE++ (Res152, [10], Auto) 0.169 0.151 11.1 48.8 77.6 85.8 0.167 0.166 23.0 35.6 64.9 74.5

difficulties in optimization of the low-level ladder term. This
result indicates that the choice of L should be proportional
to the scope-of-interest, i.e., more ladders for larger scope-of-
interest and vice versa.

C. Adaptive Ladder Loss

Manually selected ladder level (and fixed thresholds) are
not flexible enough to better exploit the training data, while
adaptive ladder loss can further enhance the coherence of the
top part (local scope) of the ranking list, as the βi weight for
the first several ladders are relatively larger.

In this part, we study the selection of the bounds of K-Means
clustering for adaptive ladder loss, i.e., (LMIN, LMAX). The
experimental results can be found in Table. VIII and Table. IX.
As shown in the upper parts of the tables, when LMIN = LMAX,

the ladder level L is fixed, while the thresholds separating the
samples are adaptively determined. In this case the model
achieves clearly better coherence compared to the VSE++

baseline (i.e., LMIN = LMAX = 1, which means the adaptively
determined inequality chain is effective in improving the
embedding coherence. We also note that the model performance
is not sensitive to the exact number of ladders. In the lower
parts of Table. VIII and Table. IX, we endow ladder loss with
more flexibility to select a proper L, and observe that the model
performs the best with (2, 4), which is better than the model
with the (2, 2) setting. This means the flexibility to determine
a proper L is beneficial for the model. Compared to using
manually a selected L and thresholds, adaptive ladder loss is
better at coherence in a local scope.

D. Adaptive Ladder Loss with Hybrid Relevance Degree

To better demonstrate the effectiveness of the proposed
adaptive ladder loss, we also perform experiments with the
“hybrid” relevance degree used in the conference version of
this paper [10], as shown in Table. X. For instance, compar-
ing the results of “CVSE++ (Res152, [10])” and “CVSE++
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Fig. 6. Histogram of Elements in Relevance Degree Matrices during the
Training Process on MS-COCO Dataset.

(Res152, [10], Auto)”, a higher CS@100 is achieved by the
adaptive ladder loss. Thus, the proposed adaptive ladder loss
is still effective for improving the visual-semantic embedding
coherence with a different relevance degree.

E. Histogram of Relevance Degrees

As aforementioned, the ladder loss with fixed thresholds [10]
can be inefficient in learning in a coherent embedding space.
As shown in Figure. 6, we create a histogram for the elements
in relevance degree matrices (using Sentence-BERT) during the
first 500 epochs during the training process on the MS-COCO
dataset. From the figure, we note that there is a large variance
in the relevance degrees for a batch of samples. This means the
proposed adaptive ladder loss is expected to be more effective
in learning a coherent embedding space, compared to that with
fixed thresholds which are not flexible enough with random
mini-batches.

F. mAP Performance for Image-to-Sentence Retrieval

The mean average precision (mAP) metric is also able to
partly reflect the coherence of the embedding space. In the
datasets adopted in our experiments, each image is assigned
with 5 corresponding descriptive sentences. In this case, a
well-trained model is expected to rank all the corresponding
sentences ahead of as many other examples as possible, and
hence leading to a higher mAP performance. Although mAP
can partly reflect the coherence of embedding space, it is still
limited because it also treats the samples in a bi-polar way.
Further more, this performance metric is only applicable for
the image-to-sentence retrieval task.

Following these, we measure the mAP performance of
models in Table. I and Table III, and summarize it in Table XI.
According to the results, the ladder loss function is beneficial
for improving the mAP performance for image-to-sentence
retrieval (e.g., by comparing the “VSE++ (Res152)” model and
the “CVSE++ (Res152, [10])” model). With a better relevance
degree (i.e., Sentence-BERT), the mAP performance can be

TABLE XI
COMPARISON OF MAP PERFORMANCE ON MS-COCO (1000 TEST

SAMPLES) AND FLICKR30K DATASETS.

Model mAP (Sentence to Image)
MS-COCO Flickr30K

VSE++ (VGG19) 0.428 0.265
CVSE++ (VGG19, [10]) 0.433 0.271
CVSE++ (VGG19) 0.440 0.277
CVSE++ (VGG19, Auto) 0.443 0.282
VSE++ (VGG19, FT) 0.435 0.308

CVSE++ (VGG19, FT, [10]) 0.486 0.310
CVSE++ (VGG19, FT) 0.489 0.317
CVSE++ (VGG19, FT, Auto) 0.495 0.325
VSE++ (Res152) 0.463 0.342

CVSE++ (Res152, [10]) 0.471 0.342
CVSE++ (Res152) 0.472 0.343
CVSE++ (Res152, Auto) 0.480 0.349
VSE++ (Res152, FT) 0.522 0.381

CVSE++ (Res152, FT, [10]) 0.525 0.382
CVSE++ (Res152, FT) 0.525 0.389
CVSE++ (Res152, FT, Auto) 0.540 0.395

improved. Last but not least, since the model more efficiently
leverages the relevance degree information with adaptive ladder
loss (e.g., by comparing “CVSE++ (Res152)” and “CVSE++
(Res152, Auto)” model), the mAP performance can be further
boosted. A higher mAP performance means the model is able to
consistently map sentences corresponding to the same images
closer to the image, which is also expected in a coherent
embedding space. Thus, the improvement in mAP also reflects
that our proposed adaptive ladder loss further enhances the
coherence of embedding space.

VI. CONCLUSION

In this paper, relevance between queries and candidates are
formulated as a continuous variable instead of a binary one,
and a new ladder loss is proposed to push different candidates
away by distinct margins. As a result, we could learn a coherent
visual-semantic space where both the totally-relevant and the
somewhat-relevant candidates can be retrieved and ranked in
a proper order. In particular, our ladder loss improves the
ranking quality of all top-N results without degrading the
ranking positions of the ground-truth candidates. Besides, the
scope-of-interest is flexible by adjusting the number of ladders.
Moreover, the inequality chain underlying the ladder loss can
be determined in an adaptive way to further boost the coherence
of the embedding space. Extensive experiments on multiple
datasets validate the efficacy of our proposed method, and our
approach achieves the state-of-the-art performance in terms of
both CS@K and R@K.

REFERENCES

[1] X. Ji, W. Wang, M. Zhang, and Y. Yang, “Cross-domain image retrieval
with attention modeling,” in ACM Int. Conf. Multimedia (ACM MM),
2017, pp. 1654–1662.

[2] R. Kiros, R. Salakhutdinov, and R. S. Zemel, “Unifying visual-semantic
embeddings with multimodal neural language models,” Proc. Adv. Neural
Inform. Process. Syst. (NeurIPS), 2014.

[3] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for
generating image descriptions,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recog. (CVPR), 2015, pp. 3128–3137.

 



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2021.3139210, IEEE
Transactions on Multimedia

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. XX, XX XXXX 14

[4] A. Karpathy, A. Joulin, and L. Fei-Fei, “Deep fragment embeddings
for bidirectional image-sentence mapping,” in Proc. Adv. Neural Inform.
Process. Syst. (NeurIPS), 2014, pp. 1889–1897.

[5] F. Faghri, D. J. Fleet, J. R. Kiros, and S. Fidler, “Vse++: Improving
visual-semantic embeddings with hard negatives,” in Proc. Brit. Mach.
Vis. Conf. (BMVC), 2018.

[6] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recog. (CVPR), 2015, pp. 815–823.

[7] K. Sohn, “Improved deep metric learning with multi-class n-pair loss
objective,” in Proc. Adv. Neural Inform. Process. Syst. (NeurIPS), 2016,
pp. 1857–1865.

[8] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by
learning an invariant mapping,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recog. (CVPR), 2006, pp. 1735–1742.

[9] D. Downey, S. Dumais, and E. Horvitz, “Heads and tails: studies of web
search with common and rare queries,” in ACM Spec. Inter. Group on
Info. Retriev. (SIGIR), 2007, pp. 847–848.

[10] M. Zhou, Z. Niu, L. Wang, Z. Gao, Q. Zhang, and G. Hua, “Ladder
loss for coherent visual-semantic embedding,” in Proc. AAAI. Conf. Artif.
Intell. (AAAI), 2020, pp. 13 050–13 057.

[11] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence embeddings
using siamese bert-networks,” in Proc. Conf. on Empir. Meth. in Natural
Lang. Proc. (EMNLP), 2019, pp. 3982–3992.

[12] M. Malinowski, M. Rohrbach, and M. Fritz, “Ask your neurons: A
neural-based approach to answering questions about images,” in Proc.
Int. Conf. Comput. Vis. (ICCV), 2015, pp. 1–9.

[13] D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor, “Canonical correlation
analysis: An overview with application to learning methods,” Neural
Computation, vol. 16, no. 12, pp. 2639–2664, 2004.

[14] Y. Gong, Q. Ke, M. Isard, and S. Lazebnik, “A multi-view embedding
space for modeling internet images, tags, and their semantics,” Int. J.
Comput. Vis. (IJCV), vol. 106, no. 2, pp. 210–233, 2014.

[15] Y. Gong, L. Wang, M. Hodosh, J. Hockenmaier, and S. Lazebnik,
“Improving image-sentence embeddings using large weakly annotated
photo collections,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2014, pp.
529–545.

[16] B. Klein, G. Lev, G. Sadeh, and L. Wolf, “Fisher vectors derived from
hybrid gaussian-laplacian mixture models for image annotation,” arXiv
preprint arXiv:1411.7399, 2014.

[17] G. Andrew, R. Arora, J. Bilmes, and K. Livescu, “Deep canonical
correlation analysis,” in Proc. Int. Conf. Mach. Learn. (ICML), 2013, pp.
1247–1255.

[18] F. Yan and K. Mikolajczyk, “Deep correlation for matching images and
text,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog. (CVPR), 2015,
pp. 3441–3450.

[19] A. Frome, G. Corrado, J. Shlens, S. Bengio, J. Dean, and T. Ranzato,
“Devise: A deep visual-semantic embedding model,” in Proc. Adv. Neural
Inform. Process. Syst. (NeurIPS), 2013, pp. 2121–2129.

[20] L. Wang, Y. Li, and S. Lazebnik, “Learning deep structure-preserving
image-text embeddings,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.
(CVPR), 2016, pp. 5005–5013.

[21] R. Socher, Q. Le, C. Manning, and A. Ng, “Grounded compositional
semantics for finding and describing images with sentences,” Trans. of
the Assoc. for Comp. Ling. (TACL), vol. 2, pp. 207–218, 2014.

[22] Z. Niu, M. Zhou, L. Wang, X. Gao, and G. Hua, “Hierarchical multimodal
lstm for dense visual-semantic embedding,” in Proc. Int. Conf. Comput.
Vis. (ICCV), 2017, pp. 1899–1907.

[23] Q. Lin, W. Cao, Z. He, and Z. He, “Mask cross-modal hashing networks,”
IEEE Trans. Multimedia, vol. 23, pp. 550–558, 2021.

[24] J. Yu, W. Zhang, Y. Lu, Z. Qin, Y. Hu, J. Tan, and Q. Wu, “Reasoning
on the relation: Enhancing visual representation for visual question
answering and cross-modal retrieval,” IEEE Trans. Multimedia, vol. 22,
no. 12, pp. 3196–3209, 2020.

[25] X. Ma, T. Zhang, and C. Xu, “Multi-level correlation adversarial hashing
for cross-modal retrieval,” IEEE Trans. Multimedia, vol. 22, no. 12, pp.
3101–3114, 2020.

[26] C. Zhao, X. Lv, Z. Zhang, W. Zuo, J. Wu, and D. Miao, “Deep fusion
feature representation learning with hard mining center-triplet loss for
person re-identification,” IEEE Trans. Multimedia, vol. 22, no. 12, pp.
3180–3195, 2020.

[27] H. Oh Song, Y. Xiang, S. Jegelka, and S. Savarese, “Deep metric learning
via lifted structured feature embedding,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recog. (CVPR), 2016, pp. 4004–4012.

[28] C.-Y. Wu, R. Manmatha, A. J. Smola, and P. Krähenbühl, “Sampling
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