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Abstract—With the target of simultaneously segmenting se-
mantically related videos to identify the common objects, video
object cosegmentation has attracted the attention of researchers
in recent years. Existing methods are primarily based on pair-
wise relations between adjacent pixels and regions, which are
susceptible to performance degradation from object entries/exists
or occlusions. Specifically, we refer these video frames without
the common objects present as the “empty” frames. In this paper,
we propose a multilevel hypergraph-based full Video object
CoSegmentation (VCS) method, which incorporates high-level
semantics and low-level appearance/motion/saliency to construct
the hyperedge among multiple spatially and temporally adjacent
regions. Specifically, the high-level semantic model fuses multiple
object proposals from each frame instead of relying on a single
object proposal per frame. A hypergraph cut is subsequently
utilized to calculate the object cosegmentation. Experiments on
four video object segmentation/cosegmentation datasets against
state-of-the-art methods with both objective and subjective results
manifest the effectiveness of the proposed VCS method, including
the SegTrack and VCoSeg datasets without “empty” frames, the
XJTU-Stevens dataset with 3.7% “empty” frames, and the Noisy-
ViCoSeg dataset proposed together with our method with 30.3%
“empty” frames.

Index Terms—Object cosegmentation, Hypergraph cut, Object
model, Fully convolutional network.

I. INTRODUCTION

V IDEO object cosegmentation refers to the problem that
separates a common category of objects from multiple

videos, which can be utilized in a number of computer
vision tasks, e.g., spatio-temporal action localization and video
content understanding. Unlike single video based object seg-
mentation, the video cosegmentation can benefit from semantic
or structure information shared among multiple videos. The
idea of leveraging shared information is also commonly used
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in other fields, such as motif detection [1] and action detec-
tion [2].

Currently, most methods aiming at this task [3], [4], [5],
[6], [7], [8], [9], [10], [11], [12] are cast into the energy mini-
mization framework by exploiting pair-wise relations between
two adjacent pixels/regions. They either utilize the low-level
features (such as color and optical flow) [3], [4], [5], [9],
[10], mid-level contextual features [11] or object proposals
[6], [7], [8] to contribute the common object cosegmentation
from multiple videos. Recently, Convolutional Neural Network
(CNN)-based [13], [14] and Fully Convolutional Network
(FCN)-based [15], [16] methods are also explored for video
object segmentation/cosegmentation.

Despite the breakthroughs these methods achieved, most
of them only focus on pair-wise correlations between pixel-
s/regions while neglect the higher order correlations among
multiple videos, which is critical for distinguishing foreground
and background. Moreover, methods based on object proposal
ubiquitously utilize a single object proposal per video frame,
which will consistently fail to localize the common object-
s once the selected object proposal is inaccurate. Besides,
most existing methods require all video frames capturing the
common objects, which is an unrealistic assumption. Their
performances will degrade dramatically, if the percentage of
“empty” frames increases. In this paper, “empty” video frame
is defined as frame without the common objects, as denoted
by red cross in Figure 1.

To address these challenges, we propose a multilevel hy-
pergraph based full Video object CoSegmentation (VCS)
method, which accounts for high order correlations, incorpo-
rates multiple object proposals per video frame, and is robust
to the presence of large amount of “empty” video frames
(i.e., object entries/exists/occlusions). Figure 1 summarizes
the flowchart of the proposed VCS method. Given multiple
noisy videos containing a common category of objects with
the existence of many “empty” video frames, our proposed
VCS method incorporates a hybrid object model for hyperedge
computation, with one high-level model focused on video
semantics, and a separate low-level model dedicated to video
motion/saliency/appearance. Specifically, the high-level object
model is designed for merging multiple object proposals to
generate a more reliable frame-wise object region, thus pro-
ducing more robust high-level features. The low-level features
(i.e., appearance, motion and saliency) naturally complement
the high-level ones, jointly contributing to a better video rep-
resentation. The hypergraph cut algorithm [17] is subsequently
leveraged to obtain the final object cosegmentation result.
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Fig. 1. The flowchart of the proposed multilevel hypergraph based full Video
object CoSegmentation method (VCS). The input are multiple noisy videos
containing a common category of objects with the existence of many “empty”
video frames. After hypergraph computation with a hybrid object model, the
final object cosegmentation results are obtained, where the “empty” video
frames are marked by red cross, and the common objects are remained in the
relevant video frames marked by green tick.

Extensive experiments are executed to evaluate the pro-
posed VCS against state-of-the-art methods with both ob-
jective and subjective results on four video object segmen-
tation/cosegmentation datasets, including 1) single-video ob-
ject segmentation without “empty” frames on the SegTrack
dataset [18], [19], 2) multi-video object cosegmentation with-
out “empty” frames on the VCoSeg dataset [20], [21], [4], 3)
multi-video object cosegmentation with a few (3.7%) “empty”
frames on the XJTU-Stevens dataset [11], and 4) multi-video
object cosegmentation with many (30.3%) “empty” frames
on the Noisy-ViCoSeg dataset newly proposed in this paper.
The experimental results clearly manifested the efficacy of the
proposed VCS method against the competing ones, especially
the ability of separating the common objects from multiple
noisy videos with large portions of “empty” frames.

To isolate the contributions of each major components of

our proposed VCS method, we further conduct ablation experi-
ments to evaluate the effects of the high-level object model, the
object proposal generation method, and the parameter setting.

The key contributions of this paper include:
• We propose a multilevel hypergraph-based full Video object

CoSegmentation (VCS) method, which is robust against
videos with “empty” video frames (i.e., frames with object
entries/exists/occlusions).

• We propose a hybrid object model consisting of both a high-
level and a low-level object model, which accounts for both
the high-level semantics and low-level features.

• By introducing the concept of object region in the high-
level object model, our method achieves state-of-the-art
performance even if the percentage of “empty” video frames
is up to 30.3%1.
This paper is an extension of our previous conference

paper [22] with more technical details and improved read-
ability. In contrast, there are three major changes. 1) A more
comprehensive review is further made on related work. 2)
More explanations are added for the problem formulation and
implementation details. 3) The experiments and discussions
section is fully reorganized by introducing new evaluation
results and comparisons with state-of-the-arts.

The remainder of the paper is organized as follows. Sec-
tion II briefly review the related work. The preliminaries of
the hypergraph are presented in Section III. We formulate the
video object cosegmentation from noisy videos in Section IV.
Extensive experiments with detailed discussions are presented
in Section V. In the last section, the whole paper is concluded.

II. RELATED WORK

In this section, we briefly survey recent related work in
video object cosegmentation and video object segmentation,
both with special emphasis on object proposal based methods,
since our method tries to address the problem of video object
cosegmentation from multiple noisy videos by leveraging
object proposals.

A. Video Object Cosegmentation

In recent years, a large amount of video object coseg-
mentation methods have been proposed to simultaneously
separate the common object from two or more videos. These
methods can be divided into two categories roughly, i.e., video
object cosegmentation from multiple videos without and with
“empty” frames. Moreover, we specifically summarize the
object proposal based methods.

1) Methods for videos without “empty” frames. Plenty of
methods [3], [4], [23], [9], [24], [14] have been proposed
to handle the traditional video object cosegmentation task,
where each of the videos contains the common object in all
frames, i.e., there are no “empty” video frames. Chen et al. [3]
identified object regions with coherent motion and then found

1This challenging video cosegmentation dataset is collected in this paper
and will be publicly available, with both ground-truth categorical labels and
pixel-wise foreground labels. Details can be found in Section V-G
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the common object based on similar chroma and texture fea-
tures. Rubio et al. [4] proposed an iterative process for figure-
ground separation based on feature matching among frame
regions and spatio-temporal tubes. Kowdle et al. [23] proposed
an unsupervised hierarchical reasoning framework, which can
combine appearance cues and multi-view cues. Wang et al. [9]
proposed a subsequent quadratic pseudo-boolean optimization
and a subspace clustering algorithm for video object coseg-
mentation. Wang et al. [24] explored multiple co-occurring
matching and employed semantic information for video object
cosegmentation. Li et al. [14] proposed a hierarchical deep
cosegmentation method for aerial videos, that can segment
primary video objects accurately and efficiently. The above
methods almost all focus on videos without “empty” frames,
and cannot handlle videos with “empty” frames.

2) Methods for videos with “empty” frames. Recently, many
methods [25], [10], [15], [26], [11], [27], [12] focus on
cosegmentation of the common objects from multiple videos
with several “empty” frames. Chiu and Fritz [25] presented a
non-parametric bayesian model that employs a spatio-temporal
segmentation prior together with a global appearance model to
cluster pixels into different regions. Wang et al. [10] integrated
inter-frame consistency, intra-frame saliency, and across-video
similarity into an energy optimization framework to segment
the common object in multiple videos. Tsai et al. [15] utilized
a fully convolutional network to extract semantic information,
and thus facilitated the cosegmentation of objects within the
same category from multiple videos. Wang et al. [26], [11] for-
mulated the task using a spatio-temporal energy minimization
framework that incorporates a spatio-temporal context model
for joint discovery and cosegmentation of the common video
object. Ma et al. [27] proposed a multi-class cosegmenta-
tion method by constructing a powerful hypergraph joint-cut
framework, which utilizes intra-image feature representation
as mid-level feature and `1-manifold graph-based inter-image
coherency exploration. However, these methods almost always
dramatically deteriorate when facing videos with a large
number of “empty” frames, although can handle videos with a
few “empty” frames. Han et al. [12] introduced the concept of
union background to improve the robustness by suppressing
the image backgrounds.

3) Object proposal-based methods. Several methods [6],
[8], [28], [7] proposed to leverage object proposals for video
object cosegmentation. Zhang et al. [6] leveraged a regulated
maximum weight clique extraction scheme to cosegment the
common objects in video by sampling, tracking and matching
object proposals. Lou and Gevers [8] constructed a proba-
bilistic graphical model by employing the appearance, motion
consistency, and saliency of object proposals to locate the
common video objects. Li et al. [28] introduced an adaptive
multi-search strategy to extend the previous object proposal
selection based methods to realize unsupervised cosegmenta-
tion of indefinite numbers of common objects. Nevertheless,
all of them are based on the assumption of a single object
proposal per video frame, where inaccurate object proposal
inevitably leads to performance degradation. Fu et al. [7] used
object proposals as basic elements and then extracted multiple
common objects by utilizing a graph model with multi-state

selection.

B. Video Object Segmentation
Video object segmentation addresses the problem that sepa-

rates relevant objects from their surroundings in a video. Most
segmentation methods are based on handcrafted features, deep
features, or object proposals.

1) Handcrafted feature-based methods. Most such research
efforts leveraged the low-level features, such as motion char-
acteristics [29], appearance [30], [31], or saliency [29], [32].
Recently, Tsai et al. [33] simultaneously estimated video ob-
ject segmentation and optical flow, and improved performance
in both tasks iteratively. Wang et al. [34] introduced temporal
saliency consistency measurement of superpixels as a prior
for pixel-wise labeling, and then utilized graph cut to obtain
the final segmentation results. Wang et al. [35] proposed
a semi-supervised video segmentation method based on a
video representation super-trajectory. Chen et al. [36] proposed
a supervised object segmentation algorithm with multilevel
model based on a more reasonable frame selection manner
called supervision optimization.

2) Deep feature-based methods. With the popularity of deep
learning, deep features have been applied in both unsuper-
vised [37], [38], [39] and semi-supervised [40], [41] video
segmentation methods. Hu et al. [37] proposed an unsu-
pervised video object segmentation approach using saliency
estimation and a graph neighborhood. Lu et al. [38] proposed
a global co-attention siamese network for the unsupervised
video object segmentation task. Wang et al. [39] proposed
a novel attentive graph neural network (AGNN) for zero-
shot video object segmentation. Cheng et al. [40] proposed
a fast and accurate video object segmentation algorithm,
which is able to start the segmentation of a specific object
immediately. Griffin and Corso [41] introduced a deep sorting
network termed BubbleNets that learns to select the guidance
frame in video object segmentation. Thanks to the learning
abilities of neural networks, deep feature-based video object
segmentation methods usually outperforms their counterparts
based on heuristics or handcrafted features.

3) Object proposal-based methods. Many methods [30],
[42], [43], [44], [45] have been proposed to extract object-
like regions or object proposals to facilitate video object
segmentation. Lee et al. [30] proposed to discover object-like
key-segments automatically and then predicted the foreground
objects in a video by grouping techniques. Ma and Latecki [42]
proposed to select object region candidates by finding the
maximum weight clique in a weighted region graph, and
utilized mutual constraints to obtain reliable segmentation
of foreground object. Fragkiadaki et al. [43] proposed to
separate moving objects in videos under the help of multiple
segment proposal generation and ranking by utilizing moving
objectness. Liu et al. [44] utilized a principled probabilistic
model to discover and segment the object jointly by coupling
a superpixel graph and an object proposal graph. Xu et al. [45]
presented a detection based multiple hypotheses propagation
method for video object segmentation, in which a proposal
decision in one frame is delayed and augmented with long-
term information to reduce ambiguity. However, almost all of
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them assume one object proposal per video frame, which could
introduce potential performance degradation due to inaccurate
proposal generation.

In contrast, there are three primary distinctions between our
proposed VCS method and the above ones.
• The proposed VCS method is robust to substantial amount

of “empty” video frames devoid of the common objects.
• Unlike conventional graph models where only pairwise

relations between two vertices are explicitly addressed, the
hypergraph represents complex correlations among multiple
vertices in the proposed VCS method.

• The VCS method introduces the concept of object region
by merging multiple object proposals in a video frame.

III. PRELIMINARIES OF HYPERGRAPH

Defining a weighted hypergraph as G = {V,E, ω}, with
the node set V and the hyperedge set E, where V = {vi}
denotes a finite set of nodes, E denotes the hyperedge set
containing a family of subsets of V (such that ∪e∈E= V ), and
each hyperedge e is assigned a positive weight ω(e) [46]. A
hyperedge e is incident with a node v when v ∈ e. For a node
v ∈ V , its degree is defined as d(v) =

∑
e∈E|v∈e ω(e). For a

hyperedge e ∈ E, its degree is defined as δ(e) = |e|, which
denotes the number of nodes that the hyperedge e contains.
A hypergraph G can be represented by a |V | × |E| incidence
matrix H with entries h(v, e) = 1 if v ∈ e and 0 otherwise.
Then d(v) =

∑
e∈E ω(e)h(v, e), and δ(e) =

∑
v∈V h(v, e).

Let Dv and De denote the diagonal matrices containing the
node and hyperedge degrees, respectively. Let W be the
diagonal matrix containing the weighted hyperedges.

IV. PROBLEM FORMULATION

In this section, we cast the video object cosegmentation
into the hypergraph cut framework. Therefore, separating the
common objects is equivalent to partition the nodes (super-
pixels) V of the hypergraph G = (V,E, ω) into a common
object subset S and a background (complement) subset Sc.
If the hyperedge e contains nodes from both S and Sc,
this hyperedge e should be cut. The hyperedge boundary
∂S := {e ∈ E|e ∩ S 6= ∅, e ∩ Sc 6= ∅} is a set of hyperedges.
The volume of S is the sum of the degrees of the nodes in
S, which is defined as vol(S) =

∑
v∈S d(v). The partition of

the hypergraph leads to the hyperedge boundaries,

vol(∂S) :=
∑
e∈S

ω(e)
|e ∩ S||e ∩ Sc|

δ(e)
, (1)

where δ(e) is the degree of hyperedge e. It is clear that
vol(∂S) = vol(∂Sc). Like the normalized cut [47], a natural
partition is achieved where internode connections within the
same cluster are dense, while those across different clusters
are sparse. Therefore, the two-way normalized hypergraph
partition minimizes the bias of unbalanced partitioning as

argminS⊂V Cut(S) := vol(∂S)(
1

vol(S)
+

1

vol(Sc)
). (2)

Following the approximate solution in [17], we retain the
first three eigenvectors with non-zero eigenvalues of ∆ as the

Appearance Saliency MotionObject Region

High-level Feature Low-level Feature

Object region hyperedge

Appearance hyperedge

Saliency hyperedge

Motion hyperedge

Fig. 2. Illustration of multilevel feature hyperedge.

indicators and use the k-means (k = 2, object and background)
on these eigenspace to get the final clustering/object coseg-
mentation results. The Laplacian matrix is defined as

∆ = I −D−
1
2

v HWD−1e HTD
− 1

2
v (3)

where Dv , H , W and De are as described in Section III.
Specifically, given a set of videos F = {Fn}Nn=1 containing

a common object with the existence of “empty” frames,
our objective is to find a binary cosegmentation labeling
B = {Bn}Nn=1 of the common object from F. Each video
Fn = {fnt }Tt=1 consists of T frames, and similarly for
its segmentation Bn = {Bn

t }Tt=1. Bn
t = {bnt,k}Kk=1 is the

binary label of frame fnt , where bnt,k ∈ {0, 1} denotes the
segmentation label of superpixel snt,k ∈ fnt either belonging
to the common object (its segmentation label bnt,k = 1) or the
background (its segmentation label bnt,k = 0).

We proceed to present the hypergraph construction, the
hypergraph computation by coupling a low-level and a high-
level object model, and the hyperedge weights computation.

A. Hypergraph Construction

Since we utilize superpixels2 as the nodes of the hypergraph,
for ease of presentation, we use nodes of p and q instead of
superpixels snt,k and sn

t′ ,k′
from now on. Nodes with similar

features are clustered into the same hyperedge with eigenvalue
decomposition of Laplacian matrix L = D−

1
2 (D − A)D−

1
2 .

A is the affinity matrix. D is the diagonal matrix with

D(p, p) =
∑
q

A(p, q), (4)

where A(p, q) means the affinity between the two nodes p
and q, and is obtained by coupling a low-level object and a
high-level object model.

B. Hyperedge Computed with a Low-level Object Model

The low-level object model computes the hyperedge by
combining the motion, appearance and saliency cues, as shown
in Figure 2.

2The superpixels used in our model is obtained by SLIC [48].
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Fig. 3. Reliable object region generation. The left column and the right column represent the different frames of the same video, respectively. The orange
area represents the original object proposals generated from each frame. The blue area represents that the highest ranking M object proposals are merged to
generate a candidate object proposal for each frame. The green area represents that the new top M ranked object proposals are merged into a reliable object
region for each frame.

1) Motion. Assume pixels from the same superpixel share
identical motion pattern, the motion feature Pm = (Pu, Pd) of
each superpixel is calculated by using optical flow [49]. The
motion intensity Pu and direction Pd of each superpixel can
be computed as

Pu =
1

Ns

∑
j

ωjuj , (5)

Pd =
1

Ns

∑
j

ωjdj , (6)

where Ns is the number of pixels in each superpixel. ωj is a
weight generated from a low-pass 2D Gaussian filter centered
on the centroid of the superpixel. uj and dj are the motion

intensity and direction of the jth pixel, respectively.
2) Appearance. Pixels from the same superpixel are highly

likely to have similar color, the color feature Pc of each
superpixel are computed in Lab color space as

Pc =
1

Ns

∑
j

cj , (7)

where cj is the color value of the jth pixel.
3) Saliency. The saliency detection method introduced

in [50] is employed to generate the saliency map for each
video frame. Then, the saliency value Ps of each superpixel
is computed by averaging the saliency values of all the pixels
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in it as
Ps =

1

Ns

∑
j

sj , (8)

where sj is the saliency value of the jth pixel.
The affinity between two nodes (superpixels) p and q based

on the low-level object model is

Al(p, q) = e−
||Pl(p)−Pl(q)||2

σl , (9)

where l ∈ {m, c, s} denotes the motion, appearance and
saliency, respectively. σl is the deviation of ||Pl(p)−Pl(q)||2.

We argue that pure low-level information is insufficient
for co-segmentation, because there is no concept of common
object in hyperedges (as validated by experiments in Sec-
tion V-C) computed purely with the low-level object model,
which leads to the degeneration of our framework into a single-
video object segmentation method. To segment the common
object, we introduce the concept of object region in the high-
level object model as presented immediately below.

C. Hyperedge Computed with a High-level Object Model

The high-level object model creates a more reliable object
region for each video frame to guide the hyperedge com-
putation, as shown in Figure 2. The reliable object region
generation procedure is illustrated in Figure 3. First, multiple
object proposals are generated per frame [51], and a video
object score O(rm) for each object proposal rm is estimated
by combining appearance, motion, and semantic cues,

O(rm) = Oa(rm) +Om(rm) +Os(rm), (10)

where Oa(rm) denotes the appearance score of rm with the
objectness [51]. Oa(rm) will be assigned a high score if
rm has a well-defined closed boundary and exhibits large
distinction from its surroundings. Om(rm) is the motion score
of rm, which is calculated by the average Frobenius norm of
the gradient of optical flow around the boundary of rm [52].
Os(rm) is the semantic score of rm. Using an FCN [53]
with ImageNet [54] pre-trained weights as initialization, we
randomly select one video from each video category as the
training set and obtain a meta network, which will be further
finetuned on the first object frame of each video to get the
final model for segmentation. After obtaining the segmentation
results, the semantic score can be calculated based on them.
The training details are presented in Section V-A.

Once the object proposals are measured and sorted by the
video object score, the highest ranking M object proposals
(empirically M = 20) are merged to generate a candidate
object region for each frame, which will be further refined to
obtain a more reliable object region. Specifically, all candidate
object proposals are clustered into two sets by k-means, i.e.
a believable (dependable) set Qb and an unbelievable (unde-
pendable) set Qu. By regarding the original object proposals
that are used to merge the top M ranked candidate object
proposals in Qb as positive samples, and the remaining ones
as negative samples, a linear SVM classifier can be trained.
Specifically, the training samples of the SVM classifier are the
output of the last convolutional layer of ResNet [55] after L2

normalization. Subsequently, all the original proposals can be
classified by this SVM classifier, and the classification score
of rm is noted as Oc(rm). Finally, we refine the video object
score O(rm) of rm by

O(rm)← O(rm) +Oc(rm), (11)

and merge the new top M ranked object proposals into a
reliable object region r̂ for each frame. The whole generation
process is illustrated as Figure 3, the object proposals with
both object and background can be filtered out.

After acquiring the reliable object region r̂ of each frame,
the hyperedge is calculated under the guidance of r̂. The nodes
(superpixels) belonging to the reliable object region contribute
to one hyperedge and the rest of nodes contribute to the
alternative hyperedge. Therefore, the affinity between nodes
p and q based on the high-level object model is calculated as

Ah(p, q) =

{
1
M

∑
mO(r̂m), if p, q ∈ r̂/r̂c

1
Np+Nq

, otherwise
, (12)

where r̂m denotes one of the M object proposals that are
merged into r̂, and r̂c denotes the remaining parts per frame.
Np and Nq are the numbers of pixels in p and q, respectively.

D. Hyperedge Weights Computation
With the obtained low-level and high-level affinity matrices

(Al and Ah, respectively, in addition to Am, Ac, and As), the
corresponding Laplacian matrices Ll and Lh (also Lm, Lc,
and Ls) can be obtained. Having obtained these Laplacian
matrices, eigenvalue decomposition leads to the hyperedges,
and the weight ω(e) for hyperedge e is,

ω(e) = c ·
∑

p,q∈eA(p, q)∑
p∈e,q /∈eA(p, q)

, (13)

where c is a normalization constant to ensure
∑

e∈E ω(e) = 1.
A larger weight is assigned to a hyperedge e if the affinity of
nodes within this hyperedge (i.e. the numerator in Eq. (13))
is high, while the affinity of the nodes across different hy-
peredges (i.e. the denominator in Eq. (13)) is low, and vice
versa. A large weight ω(e) prevents hyperedge e from being
cut, while a small weight ω(e) allows hyperedge e to be
cut. Depending on a hyperedge being low-level or high-level,
A(p, q) is computed by Eq. (9) or Eq. (12), respectively.

V. EXPERIMENTS AND DISCUSSIONS

A. Implementation Details
The proposed Video object CoSegmentation (VCS) method

is implemented in MATLAB, while the FCN is trained and
fine-tuned with the Caffe framework with NVIDIA CuDNN
libraries. The ImageNet pre-trained FCN model is trained
on one video sampled from each video category and fine-
tuned on the first object frame of each video with stochastic
gradient descent (SGD) at a fixed learning rate of 10−14. The
weight decay and momentum parameters are fixed to 5×10−4

and 0.99. All experiments are conducted on an Intel Xeon
2.1GHz CPU with 64GB RAM and a NVIDIA Titan Xp GPU,
for code on MATLAB and Caffe, respectively. During object
cosegmentation inference, the proposed VCS method achieves
a processing speed of approximately 0.5 frame per second.
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B. Experimental Setting
1) Tasks and Evaluation Datasets. Extensive experiments

are conducted to evaluate the proposed VCS method against
state-of-the-art methods with both objective and subjective
results. Specifically, we evaluate our method on four different
tasks, with corresponding dataset on each task as follows.
• Task 1 - single-video object segmentation without “empty”

frames on the SegTrack dataset [18], [19].
• Task 2 - multi-video object cosegmentation without “emp-

ty” frames on the VCoSeg dataset [4], [20], [21].
• Task 3 - multi-video object cosegmentation on the XJTU-

Stevens dataset [11] with a few (3.7%) “empty” frames.
• Task 4 - multi-video object cosegmentation on the Noisy-

ViCoSeg dataset with many (30.3%) “empty” frames, which
is proposed in this paper.
Table I summarizes the statistics of the above four datasets

along with their application task.
2) Evaluation Metric. The segmentation performance is

measured by the intersection-over-union (IoU) score, which
is defined as

IoU =
|Seg ∩GT |
|Seg ∪GT |

, (14)

where Seg is the binary segmentation mask obtained by a
video object segmentation/cosegmentation method, GT is the
binary ground truth segmentation mask obtained by human
annotations, and | · | indicates the cardinality (i.e., number of
pixels).

We use the labeling accuracy to evaluate the performance
of identifying the “empty” frames, which is defined as

Lacc =
Ntp +Ntn

Ntotal
, (15)

where Ntp, Ntn and Ntotal denote the numbers of true
positive, true negative and all video frames, respectively.

3) Baselines. Three methods for single-video object segmen-
tation (VOS [30], FOS [29], and BVS [56]) and five methods
for multi-video object cosegmentation (MVC [25], VOC [6],
RVC [10], CBP [12] and MSG [7]) are selected as competing
algorithms.
• VOS [30], a method for single-video object segmentation

that can discover and group key segments automatically to
separate the foreground object.

• FOS [29], a method for single-video object segmentation
that can segment the foreground object by the efficient fore-
ground estimation and figure/ground labeling refinement.

• BVS [56], a method for single-video object segmentation
that can achieve foreground object segmentation via bilateral
space operations with the usage of the object ground truth
in the first frame.

• MVC [25], a method for multi-video object cosegmentation
that can achieve multi-class object cosegmentation via a
nonparametric bayesian model across multiple videos.

• VOC [6], a method for multi-video object cosegmentation
that leverages a regulated maximum weight clique extraction
scheme to cosegment the common objects in videos by
sampling, tracking and matching object proposals.

• RVC [10] a method for multi-video object cosegmentation
that integrates inter-frame consistency, intra-frame saliency,

and across-video similarity into an energy optimization
framework to cosegment the common objects in multiple
videos.

• CBP [12] a method for multi-image object cosegmentation
that introduces the concept of union background to improve
the robustness by suppressing the image backgrounds.

• MSG [7] a method for multi-video object cosegmentation
that uses object proposals as basic elements and then extracts
multiple common objects by utilizing a graph model with
multi-state selection.

C. Ablation Studies

To isolate the contributions of individual high-level or low-
level object model of the proposed VCS method, we conduct
ablation experiments on multiple tasks, with ablated variants
described as follow.
• VCS-L, an ablated variant of VCS with only the low-level

object model. VCS-L are purely based on the low-level
appearance/motion/saliency model, without any high-level
semantic cues. Therefore, VCS-L is a degenerated single-
video object segmentation method. We evaluate VCS-L on
Task 1 and Task 2 but not on Task 3 or Task 4, considering
VCS-L cannot handle “empty” frames without the high-level
object model.

• VCS-O, an ablated variant of VCS with only the high-level
object model. Without low-level cues, VCS-O relies purely
on the reliable object regions generated by the high-level
object model for segmentation. We evaluate VCS-O on all
four tasks.

• VCS, the full version of the proposed method as shown in
Fig. 1, which is evaluated on all four tasks and it is compared
against other state-of-the-art methods.
As presented in Table II–III, VCS-L achieves comparable

performance compared with other low-level features-based
methods (VOS [30] and FOS [29]). Comparing the perfor-
mance of VCS-L and VCS-O quantitatively (Table II–III) and
qualitatively (Fig. 4–5), we find that the high-level semantics-
based VCS-O significantly outperform the low-level features-
based VCS-L. However, only considering high-level cues may
result in the missing of segmentation details, such as the bird’s
feet and monkey’s hands in Fig. 4.

With all components intact, the full version VCS achieves
the best performance. From Table II–III, we observe that the
“high-level object model” accounts more for the performance
improvement. Additionally, by comparing VCS-O with VCS,
we observe that the incorporation of low-level information
further boosts the segmentation performance.

D. Single-video Object Segmentation without “Empty”
Frames

To evaluate the single-video object segmentation perfor-
mance without “empty” frames, we carry out experiments on
the SegTrack dataset [18], [19], which contains 14 videos, of
which 8 videos have only one object, and the others capture
multiple objects. Since our method is designed for single
object segmentation, our method is only evaluated on the 8



Transactions on Multimedia

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. XX, XX XXXX 8

TABLE I
THE STATISTICAL DETAILS AND APPLICATION TASK OF FOUR BENCHMARKS OR THEIR SUBSETS FOR EVALUATION OF THE PROPOSED VCS METHOD.

Dataset Task Input Group Video Frame “Empty” FrameTotal Pos. Neg.
SegTrack [18], [19] Segmentation Single video 8 8 785 785 0 0%
VCoSeg [4], [20], [21] Cosegmentation Multiple videos 3 11 512 512 0 0%
XJTU-Stevens [11] Cosegmentation Multiple videos 10 101 13398 12907 491 3.7%
Noisy-ViCoSeg Cosegmentation Multiple videos 12 35 4835 3518 1465 30.3%

TABLE II
THE SEGMENTATION PERFORMANCES OF OUR METHODS (VCS, VCS-L,

AND VCS-O), AND THREE METHODS FOR SINGLE-VIDEO OBJECT
SEGMENTATION (VOS [30], FOS [29], AND BVS [56]) ON THE

SEGTRACK DATASET.

Video VOS FOS BVS VCS-L VCS-O VCS[30] [29] [56]
birdfall2 49.4 17.5 63.5 51.8 61.9 62.0
bird of paradise 92.4 81.8 91.7 86.2 92.4 92.6
frog 75.7 54.1 76.4 57.0 73.6 73.5
girl 64.2 54.9 79.1 68.8 79.6 79.6
monkey 82.6 65.0 85.9 68.2 75.9 75.9
parachute 94.6 76.3 93.8 87.8 90.8 91.5
soldier 60.8 39.8 56.4 49.9 69.1 69.4
worm 62.2 72.8 65.5 62.0 68.1 68.1
Avg. 72.7 57.8 76.5 66.5 76.4 76.6

VOS FOS BVS VCS-O VCSVCS-L

Fig. 4. Subjective segmentation results on the SegTrack dataset.

videos containing only one object. We compare our proposed
method with VOS [30], FOS [29], and BVS [56], which are
all proposed for the single-video object segmentation task.

We present IoU scores of these methods in Table II, and
some subjective segmentation results of them in Figure 4.
The results showed that our proposed VCS outperforms all
the competing methods, and the VCS-L performs poorly
compared to the proposed VCS and VCS-O, VOS [30] and
BVS [56] by margins from 7.2% to 11%. While VCS-O is
better than VOS [30] and FOS [29], but slightly underperforms
BVS [56]. These demonstrate the efficacy of the reliable
object region generated by the high-level semantics object
model. Besides, although our method is designed for multi-

TABLE III
THE SEGMENTATION PERFORMANCES OF OUR METHODS (VCS, VCS-L,

AND VCS-O), THREE METHODS FOR SINGLE-VIDEO OBJECT
SEGMENTATION (VOS [30], FOS [29], AND BVS [56]), AND TWO

METHODS FOR MULTI-VIDEO OBJECT COSEGMENTATION (MVC [25] AND
VOC [6]) ON THE VCOSEG DATASET.

Video VOS FOS BVS MVC VOC VCS-L VCS-O VCS[30] [29] [56] [25] [6]
chachacha 55.3 61.0 71.7 56.3 53.2 67.2 75.2 75.2
ice skater 82.1 81.6 83.5 69.1 65.3 66.3 80.1 80.7
kite surfer 69.1 35.0 65.9 38.2 51.6 52.9 69.1 69.3
Avg. 68.8 59.2 73.7 54.5 56.7 62.1 74.8 75.1

video object cosegmentation, it still achieves state-of-the-art
performance on single-video object segmentation.

E. Multi-video Object Cosegmentation without “Empty”
Frames

The performance of object cosegmentation from multiple
videos without “empty” frames is then evaluated on the
VCoSeg dataset [4], [20], [21], which consists of 10 videos
within 3 categories. And all video frames contain the com-
mon object. We compare our proposed method with two
multi-video object cosegmentation methods (MVC [25] and
VOC [6]), and three single-video object segmentation methods
(i.e., VOS [30], FOS [29], and BVS [56]). The reasons why
we choose the three single-video object segmentation methods
for comparison are two-fold, 1) to fairly compare with VCS-
L, which is essentially a single-video object segmentation
method degenerated from VCS, and 2) to explore the advan-
tages of multi-video object cosegmentation over single-video
object segmentation. For these single-video object segmen-
tation methods, each video is individually segmented. The
subsequent experiments on the XJTU-Stevens and the Noisy-
ViCoSeg datasets follow the same setting.

Their IoU scores are compared in Table III with additional
subjective segmentation results in Figure 5. The results reveal
that, 1) our VCS and VSC-O are better than all the competing
methods, and outperforms VOS [30], FOS [29], MVC [25],
and VOC [6] by 6% ∼ 20.3%. This demonstrates that the
multilevel hypergraph model (especially the high-level object
model) in VCS contributes significantly to cosegmentation
performance. 2) Our VCS-L perform better than FOS [29],
MVC [25], and VOC [6], but poorer than VOS [30] and
BVS [56]. We speculate that the performance gap could be
attributed to the degenerated VCS-L being a single-video ob-
ject segmentation method, which encapsulates only low-level
appearance/motion/saliency cues in each individual video, but
ignores high-level semantics across multiple videos. 3) Our
VCS and VCS-O perform slightly better than BVS [56], we
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VOS

FOS

BVS

VCS-O

VCS

MVC

VOC

VCS-L

Fig. 5. Subjective segmentation results on the VCoSeg dataset.

TABLE IV
THE OBJECT DISCOVERY ACCURACIES OF OUR METHODS (VCS AND

VCS-O), ONE METHOD FOR SINGLE-VIDEO OBJECT SEGMENTATION (BVS
[56]), AND FIVE METHODS FOR MULTI-VIDEO OBJECT COSEGMENTATION

(MVC [25], VOC [6], RVC [10], CBP [12] AND MSG [7]) ON THE
XJTU-STEVENS DATASET.

Video APR BVS MVC VOC MSG RVC CBP VCS[56] [25] [6] [7] [10] [12]
airplane 97.1 95.7 97.1 97.1 97.1 98.9 99.7 99.6
balloon 95.9 97.3 96.5 95.9 95.9 98.9 96.2 99.1
bear 96.8 97.6 96.8 96.8 96.8 99.1 98.9 99.2
cat 96.5 96.5 96.5 96.5 96.5 97.3 90.0 96.5
eagle 97.7 97.0 97.7 97.7 97.7 98.8 97.7 97.7
ferrari 97.7 97.8 98.1 97.7 97.7 98.1 98.1 98.3
figure skating 96.3 96.3 96.3 96.3 96.3 98.3 94.2 97.5
horse 95.7 97.2 97.3 95.7 95.7 97.6 97.6 98.6
parachute 96.8 97.7 96.8 96.8 96.8 98.0 95.6 98.2
single diving 94.5 95.5 95.6 94.5 94.5 97.4 93.3 97.8
Avg. 96.5 96.9 96.7 96.5 96.5 98.2 96.1 98.3

speculate that the competitive performance of BVS [56] could
originate from its leverage of the first-frame segmentation
mask.

F. Multi-video Object Cosegmentation with a Few “Empty”
Frames

The performance of object cosegmentation from multiple
videos with a few “empty” frames is further evaluated on
the XJTU-Stevens dataset[11], which contains 101 publicly
available internet videos of 10 categories. These videos contain
3.7% “empty” frames (with the common object absent) and
varieties of challenging scenarios, including large variations
in object appearance, scale, and angle of view. We test and
compare our method against one method for single-video
object segmentation (BVS [56]), four methods for multi-video
object cosegmentation (MVC [25], VOC [6], RVC [10], and

MSG [7]), and one method for multi-image object cosegmen-
tation (CBP [12]). Among the multi-video object cosegmen-
tation methods, VOC [6] and MSG [7] are also based on the
refinement of object proposals, which is similar to our VCS
method. Meanwhile, in order to explore how well single-video
object segmentation methods perform on multiple videos with
a few “empty” frames, we select BVS [56] for comparison,
because it performs best among the competing single-video
object segmentation methods on both the SegTrack [18], [19]
and VCoSeg [4], [20], [21] datasets above in Table II–III.
For CBP [12], all frames of each category are processed as
individual images, and then are simultaneously segmented,
where the temporal correlations among frames are ignored.
This setting explores whether the temporal consistency can
benefit the multi-video object cosegmentation.

We first evaluate the binary classification performance of
distinguishing frames with the common object from “empty”
ones. The object discovery accuracies are summarized in
Table IV. Our proposed VCS achieves the highest accuracy
among all methods. Specifically, the accuracies of BVS [56]
are equivalent to or even lower than the APR3 in some
video categories, and the accuracies of VOS [30], MVC [25],
CBP [12] and MSG [7] are merely marginally higher than
the APR. Overall, RVC [10] achieves the second highest
performance, mainly due to its discovery energy function that
focuses on common objects. Compared with the proposed VCS
method, these competing methods achieve object discovery
accuracies on par with or slightly better than the random guess
(APR), possibly suffering from performance penalties incurred
by the “empty” frames.

The average IoU scores are presented in Table V with
additional subjective segmentation results in Figure 6. Note
that, 1) the ablated VCS-L (with low-level object model
only) cannot handle videos with “empty” frames, thus it is
excluded. 2) The average IoU scores are computed on video
frames containing the common objects. As shown in Table V,
methods for multi-video/multi-image object cosegmentation
(MVC [25], VOC [6], RVC [10], CBP [12] and MSG [7])
perform better than the single-video object segmentation B-
VS [56] method. 3) From Table III–V, single-video object
segmentation method BVS [56] degenerates a lot when tested
on datasets with “empty” frames, which is also indicated in
Figure 6. 4) The multi-image object cosegmentation methd
CBP [12] underperforms most of the multi-video object coseg-
mentation (MVC [25], VOC [6], RVC [10], and our VCS and
VCS-O) except MSG [7], because it cannot employ motion cue
to enhance the temporal consistency of the common object. 5)
Both our VCS and VCS-O are superior to all other competing
methods, especially to the single-video object segmentation
method BVS [56] by an obvious margin.

G. Multi-video Object Cosegmentation with Many “Empty”
Frames

The performance of object cosegmentation from multiple
videos with many “empty” frames is evaluated on the Noisy-

3A random guess classifier that always predicts positive will achieve the
actual positive rate (APR) in Table IV.
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Fig. 6. Subjective segmentation results on the XJTU-STEVENS dataset.

Fig. 9. Subjective segmentation results on the proposed Noisy-ViCoSeg dataset.
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Fig. 7. The numbers of total frames, positive frames and negative frames with
the percentage of “empty” frames of each category of the newly proposed
Noisy-ViCoSeg dataset.

ViCoSeg Dataset. This dataset is newly collected and proposed
in this paper, and it consists of 35 videos with 4,835 frames
of 12 categories in total, where each video contains a large
proportion of “empty” frames. 30.3% of video frames are
“empty” ones without a common object on average. Figure 7
details the statistics. We manually assign a per-frame label
indicating whether each individual frame contains the common
object or not, and each non-“empty” video frame is also
annotated with a per-pixel segmentation mask, as illustrated in
Figure 8. We evaluate our proposed VCS method against one
method for single-video object segmentation (BVS [56]), four
methods for multi-video object cosegmentation (MVC [25],
VOC [6], RVC [10], and MSG [7]), and one multi-image ob-
ject cosegmentation method (CBP [12]). Here, the competing
methods are the same as the ones for the above comparison on
multi-video object cosegmentation with a few “empty” frames,
in order to further explore their abilities to handle multiple
videos with more “empty” frames.
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TABLE V
THE SEGMENTATION PERFORMANCES OF OUR METHODS (VCS AND

VCS-O), ONE METHOD FOR SINGLE-VIDEO OBJECT SEGMENTATION (BVS
[56]), AND FIVE METHODS FOR MULTI-VIDEO OBJECT COSEGMENTATION

(MVC [25], VOC [6], RVC [10], CBP [12] AND MSG [7]) ON THE
XJTU-STEVENS DATASET.

Video BVS MVC VOC MSG RVC CBP VCS-O VCS[56] [25] [6] [7] [10] [12]
airplane 35.1 57.6 58.6 53.2 48.4 70.7 66.2 66.7
balloon 78.7 86.8 86.8 81.8 90.2 73.8 90.2 93.2
bear 85.7 80.8 83.2 84.9 96.7 81.7 84.9 88.0
cat 71.2 75.2 78.8 64.3 55.3 56.8 73.8 73.7
eagle 59.4 72.2 78.4 70.1 69.4 78.1 77.9 79.3
ferrari 61.3 75.4 61.8 41.3 69.7 67.4 83.2 82.9
figure skating 48.7 61.7 65.3 32.9 76.1 36.1 69.5 69.9
horse 79.5 80.3 85.1 70.9 85.6 77.4 80.2 82.7
parachute 76.4 80.8 83.4 43.6 66.9 53.0 78.7 79.1
single diving 35.6 59.1 69.5 42.3 62.9 52.4 63.5 63.0
Avg. 63.2 73.0 75.1 58.5 72.1 64.7 76.8 77.9

Fig. 8. Some sample frames with annotations of the Noisy-ViCoSeg dataset.
The red cross indicates “empty” frames; the green tick indicates positive
frames containing the common object enveloped by the red edge.

The object discovery accuracies (distinguishing frames with
the common object from the “empty” ones) are presented in
Table VI. Our VCS method outperforms all other methods
by a significant margin of 4.0% ∼ 18.8%, mainly due to its
designed robustness against “empty” frames.

With their IoU scores in Table VII and some subjective
segmentation results in Figure 9, both the proposed VCS and
VCS-O are superior to the competing methods by a margin
of 5.9% ∼ 30.7%. As illustrated in Figure 9, other object
segmentation or co-segmentation methods repeatedly fail to
focus on the common object. However, our methods (VCS-

TABLE VI
THE OBJECT DISCOVERY ACCURACIES OF OBJECT DISCOVERY OF OUR

METHODS (VCS AND VCS-O), ONE METHOD FOR SINGLE-VIDEO OBJECT
SEGMENTATION (BVS [56]), AND FIVE METHODS FOR MULTI-VIDEO

OBJECT COSEGMENTATION (MVC [25], VOC [6], RVC [10], CBP [12]
AND MSG [7]) ON THE PROPOSED NOISY-VICOSEG DATASET.

Video APR BVS MVC VOC MSG RVC CBP VCS[56] [25] [6] [7] [10] [12]
airplane 73.4 85.2 93.2 73.4 73.4 87.8 86.4 98.1
F1 66.3 90.3 81.8 66.3 66.3 88.9 90.5 99.1
gymnastics 61.7 61.7 61.7 61.7 61.7 77.0 63.0 100.0
lion 74.9 74.9 90.2 74.9 74.9 90.4 81.9 92.3
ostrich 69.7 74.4 75.9 69.7 69.7 84.1 69.7 96.7
panda 75.7 75.7 82.2 75.7 75.7 82.2 79.2 83.0
parkour 77.1 63.2 77.1 77.1 77.1 91.6 77.1 91.4
rock 85.1 85.1 89.5 85.1 85.1 97.5 95.8 99.3
skateboarding 80.9 80.9 80.9 80.9 80.9 88.7 80.9 94.2
skiing 81.4 70.7 96.2 81.4 81.4 91.8 89.1 99.0
surfing 79.8 85.6 79.8 79.8 79.8 88.2 87.0 93.6
tiger 74.4 74.4 75.4 74.4 74.4 92.7 90.8 91.8
Avg. 73.7 77.2 82.1 73.7 73.7 88.5 82.6 92.5

TABLE VII
THE SEGMENTATION PERFORMANCES OF OUR METHODS (VCS AND

VCS-O), ONE METHOD FOR SINGLE-VIDEO OBJECT SEGMENTATION (BVS
[56]), AND FIVE METHODS FOR MULTI-VIDEO OBJECT COSEGMENTATION

(MVC [25], VOC [6], RVC [10], CBP [12] AND MSG [7]) ON THE
PROPOSED NOISY-VICOSEG DATASET.

Video BVS MVC VOC MSG RVC CBP VCS-O VCS[56] [25] [6] [7] [10] [12]
airplane 54.7 51.8 34.1 54.9 51.6 83.8 72.8 73.6
F1 15.3 56.3 19.3 35.6 31.9 70.1 64.1 64.1
gymnastics 19.7 23.1 10.4 33.9 35.0 31.3 62.1 62.3
lion 50.2 74.7 70.9 46.2 73.8 72.3 48.8 49.0
ostrich 61.6 20.0 1.1 1.8 50.4 4.8 54.1 53.6
panda 51.7 30.6 45.7 28.2 68.5 83.9 70.3 72.9
parkour 39.8 60.6 38.9 10.3 70.1 25.0 65.5 65.5
rock 64.1 46.4 53.0 62.9 58.6 61.2 64.4 64.6
skateboarding 53.5 38.9 8.0 58.9 59.0 42.3 59.4 59.6
skiing 49.0 75.2 36.6 72.9 83.2 71.6 70.2 74.1
surfing 66.8 52.0 53.6 71.5 61.3 45.0 75.1 74.8
tiger 53.9 31.5 28.7 16.4 54.9 41.7 53.2 54.6
Avg. 48.4 46.8 33.4 41.1 58.2 52.8 63.3 64.1

O and VCS) manage to segment the common object, which
indicates their robustness against distractions from “empty”
frames and appearance/scale/deformation variations.

H. Parameter Sensitivity Analysis

As illustrated in Figure 3, top-M ranked object proposals
are selected and merged into the reliable object region in the
high-level object model. To evaluate the parameter sensitivity
on the choice of M , we test our VCS method with varying
M = 5, · · · , 30 on the Noisy-ViCoSeg dataset. We summarize
the average IoU scores in Table VIII, and additional subjective
segmentation results in Figure 10. As shown in Table VIII,
our VCS performs better on most video categories with M =
20 than other choices. As shown in Figure 10, the merged
object regions are often incomplete with M < 20, but may
contain excessive amount of background with M > 20. We
thus empirically set M = 20 throughout our experiments.

I. Computational Cost Analyses

We proceed to evaluate the computational cost of our
proposed VCS with the average execution time per frame
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TABLE VIII
THE SEGMENTATION PERFORMANCES OF OUR PROPOSED VCS METHOD

BY VARYING THE VALUE OF M ON THE PROPOSED NOISY-VICOSEG
DATASET.

Video M = 5 M = 10 M = 15 M = 20 M = 25 M = 30
F1 43.8 60.9 62.7 64.1 62.9 61.9
gymnastics 59.8 68.8 64.2 62.1 39.0 34.7
lion 32.9 33.8 47.2 48.8 50.2 52.1
parkour 38.5 48.3 62.3 65.5 60.6 38.9
rock 56.8 62.3 63.6 64.4 60.0 59.5
skateboarding 47.6 57.2 58.9 59.4 56.4 56.3
surfing 72.0 72.7 73.5 75.1 74.2 71.1
tiger 34.8 45.2 50.3 53.2 55.8 56.7
Avg. 48.3 56.2 60.3 61.6 57.4 53.9

Fig. 10. Subjective segementation results of our proposed VCS method by
varying the value of M on the proposed Noisy-ViCoSeg dataset.

on the Noisy-ViCoSeg dataset. Our proposed VCS is divided
into two main steps for computational cost analyses, i.e., a
preparation step and a cosegmentation step.

The preparation step includes superpixel generation (SG),
motion feature computing (MF), saliency feature computing
(SF), original object proposals generation (PG) and FCN
segmentation (FCN). The left part of Table IX summarizes
the average execution time per frame of the preparation
step. Potentially, the procedures in preparation step can be
accelerated using parallel computing.

The core computational cost of our VCS method comes
from the cosegmentation step, which is further divided into
hypergraph construction and hypergraph cut (HC). Hypergraph
construction includes the hypergraph nodes construction, hy-
peredge computation with a low-level object model (HEL)
and a high-level object model (HEH). Since hypergraph nodes
construction is implemented during superpixel generation (S-
G), and thus no extra time is consumed. The right part of
Table IX lists the average execution time per frame of the
cosegmentation step.

To further evaluate the efficiency of our proposed VCS
against other competing methods, we compare the time cost of
our proposed VCS with five multi-video object cosegmentation

TABLE IX
AVERAGE EXECUTION TIME PER FRAME OF THE PREPARATION STEP AND

THE COSEGMENTATION STEP.

Steps Preparation Cosegmentation
SG MF SF PG FCN HEL HEH HC

Time(s) 1.9 0.8 0.5 18.0 0.9 0.57 1.06 0.37

TABLE X
AVERAGE EXECUTION TIME PER FRAME OF OUR PROPOSED VCS METHOD

AND FIVE METHODS FOR MULTI-VIDEO OBJECT COSEGMENTATION
(MVC [25], VOC [6], RVC [10], CBP [12], AND MSG [7]) ON THE

NOISY-VICOSEG DATASET.)

Method MVC VOC MSG RVC CBP VCS[25] [6] [7] [10] [12]
Time(s) 9.2 15.3 0.3 10.1 8.3 2.0

methods (MVC [25], VOC [6], RVC [10], CBP [12], and
MSG [7]) on the Noisy-ViCoSeg dataset. Table X presents
the average execution time per frame of them. The results
show that our proposed VCS has competitive computational
efficiency compared to the other state-of-the-art methods, and
is only slightly slower than MSG [7]. However, MSG achieves
the highest speed but meanwhile sacrificing the segmentation
accuracy, as illustrated in Table VII; while our proposed VCS
achieves a better balance between efficiency and accuracy.

In summary, the experiments on the above four datasets
reveal that the proposed VCS method achieves competitive
performance compared with the state-of-the-arts. Moreover,
the ablation studies demonstrate the efficacy of the high-
level object model. Most importantly, the experimental results
indicate that the performance gap between our proposed VCS
method and competing ones becomes larger when the portion
of “empty” frames increases. This manifests that our proposed
VCS method is capable of cosegmenting the common objects
from multiple videos with large portions of “empty” video
frames.

VI. CONCLUSION

In this paper, we propose a full Video object CoSegmen-
tation method (VCS), which is capable of cosegmenting the
common objects in multiple videos automatically, with the
robustness to substantial amount of “empty” frames. Benefit-
ing from a multilevel hypergraph architecture, the proposed
VCS method is capable of incorporating both a low-level
object model and a high-level semantic model, which incorpo-
rates multiple object proposals per video frame, accounts for
high order correlations, and thus contributes to its robustness
against object entries/exists/occlusions. Empirical results on
four video object segmentation/cosegmentation datasets veri-
fied the performance advantage of our VCS method.
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