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Abstract

Human actions often involve interactions with objects, and such action possibilities
of objects were termed “affordances” in human-computer interaction (HCI) literature. To
facilitate action recognition with object affordances, we propose the Object Affordances
Graph (OAG), which cast human-object interaction cues into video representations via an
iterative refinement procedure. With the spatio-temporal co-occurrences between human
and objects captured, the Object Affordances Graph Network (OAGN) is subsequently
proposed. To provide a fair evaluation of the role that object affordances could play on
human action recognition, we have assembled a new dataset with additional annotated
object bounding-boxes to account for human-object interactions. Multiple experiments
on this proposed Object-Charades dataset verify the value of including object affordances
in human action recognition, specifically via the proposed OAGN, which outperforms
existing state-of-the-art affordance-less action recognition methods.

1 Introduction
Human action recognition [3, 8, 24, 39] is an increasingly popular topic in computer

vision, especially with recent more challenging datasets [12, 30] with untrimmed videos,
much more action categories and dynamic (e.g., often cluttered) backgrounds. Instead of
treating background objects purely as nuisances, we speculate that it could be beneficial to
exploit object affordances (including background scenes) to guide action recognition. A few
examples are illustrated in Figure 1, where people and their interacting objects are annotated
with green and red bounding-boxes, respectively. Unsurprisingly, we can approximately
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(a) Someone is playing with phone (d) Someone is opening a book(b) Someone is washing a table (c) Someone is working on laptop

Figure 1: Action possibilities of objects (i.e., object affordances, or human-object interac-
tions) could provide helpful hints in determining the action category.

deduce the action categories purely based on the occurrence of such objects. For example, the
presence of multiple books (marked by a red bounding-box) in Figure 1(d) strongly indicates
human actions such as reading/writing/opening/closing a book/books. Such observations
motivate us to leverage the object affordances to assist the action recognition.

Typical existing affordance-less action recognition methods include two-stream convo-
lution networks [33], 3D conventional neural networks (3D CNNs) [3, 6, 15], and long
short-term memory (LSTM)-based recurrent neural networks (RNNs) [21, 25, 43]. Among
them, Wang et al. [37] leveraged spatio-temporal object auxiliary cues with a temporal graph
by densely sampling the region of interest in video frames to exploit temporal dependen-
cies. However, such temporal graph model is derived solely from objects rather than spatio-
temporal correlations between human and objects, i.e., human-object interactions.

Inspired by the idea of object affordance-assisted action recognition, we propose the
Object Affordances Graph (OAG) to exploit the spatio-temporal relationships between hu-
man and objects/scenes across all video frames. Specifically, OAG explicitly casts spatio-
temporal human-object relationships as graph nodes, which are represented by feature maps
extracted inside bounding-boxes containing human, interacting objects and the union of the
them, respectively. The OAG iteratively updates each graph node to cast the human-object
interaction cues into the video representation. In addition, the OAG seamlessly integrates
with the CNN backbone, making end-to-end training of our proposed Object Affordances
Graph Network (OAGN) possible.

To provide a fair evaluation of how much object affordances could contribute to action
recognition, we propose a new dataset with annotated object bounding-boxes as additional
ground truth, based on the belief that automatic object detection performance should be de-
coupled. This dataset is obtained by first applying Deformable R-FCN [5, 19] object detector
pre-trained on MS COCO [23] dataset on the Charades dataset [30] followed by a manual re-
view and repair step. During this manual step, low quality and false detections are removed.
The obtained subset of Charades dataset together with the additional object annotations is
named as the Object-Charades dataset. Experimental results on this Object-Charades dataset
show that our proposed OAGN outperforms existing affordance-less baselines with less than
1% parameter overhead. These results validate the value of spatio-temporal human-object
interaction cues in action recognition and the efficacy of the proposed OAGN.

Overall, the primary contributions of this paper are summarized as follows.

• Verification of the performance benefits from including spatio-temporal human-object in-
teraction cues (i.e., object affordances) in human action recognition;

• A customized Object-Charades dataset with annotations of humans and objects as addi-
tional ground truth, which resolves the dependency on automatic object detection perfor-
mance;
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• The incorporation of spatio-temporal human-object interaction cues as object affordances
in action recognition via the proposed OAG, which aggregates both long-range spatial and
long-term temporal contexts around human and objects across video frames;
• The subsequent graph-based convolution network OAGN that can be conveniently trained

end-to-end.

2 Related Work
Action Recognition. With recent human action datasets [12, 20, 30, 35], deep neural

network-based action recognition methods have been actively developed in recent years. Si-
monyan and Zisserman [33] propose the two-stream model, with multiple later variants [7, 9,
36]. 3D CNNs such as I3D [3], 3D ResNet [15], SlowFast [6], and NL I3D [38] achieve im-
proved recognition performance. However, such existing action recognition algorithms lack
explicit treatment of spatio-temporal human-object interaction cues (i.e., object affordances).

Graph Neural Networks (GNNs) receive much attention recently, thanks to its ability
to represent complex interdependencies [1, 2]. Herzigo et al. [18] propose a spatio-temporal
action graph to detect driving collisions. Li et al. [22] propose a recurrent update scheme for
the hidden state nodes for situation recognition. Yan et al. [39] and Si et al. [29] incorporate
GNNs in skeleton-based action recognition. Wang et al. [37] combine CNNs with GNNs and
exploit spatio-temporal object auxiliary cues with a temporal graph by densely sampling the
region of interest in video frames to exploit temporal dependencies. However, this temporal
graph accounts solely for objects rather than human-object interactions.

Human-Object Interaction (HOI) detection tasks localize human and objects with
bounding-boxes and identify their interacting action [4]. Many existing methods combine
both the HOI detection and human action recognition task [13, 41]. Specifically, Gkioxari et
al. [11] propose the InteractNet to infer human-object interactions in an end-to-end manner
with a modified Faster R-CNN [27]. Gupta et al. [14] combine human pose key points and
handcrafted features for HOI detection. Qi et al. [26] adopt message passing over GNN-
based approach. The aforementioned methods assign action labels to both the human and
the object detections without explicit formulation of human-object interactions as a dedicated
node in GNNs.

3 Object Affordances Graph Network
We design the OAGN to incorporate human-object interaction cues into the video represen-
tation via the OAG update iterations (as shown in Figure 2). The OAGN takes video frames
and human/object bounding-boxes as inputs. We utilize various 2D/3D CNNs to extract
video features (denoted as the orange-brown “Conv” layers in Figure 2) and associate them
with corresponding bounding-boxes with the RoIAlign algorithm [10, 17] on each feature
frame. Each human bounding-box (e.g., yellow box) and each object bounding-box (e.g.,
red and blue boxes) contribute to an individual node in the OAG, where such nodes are ini-
tialized with features corresponding to their respective bounding-boxes. Additionally, one
additional node (denoted as the solid green circle in the OAG step of Figure 2) is included in
each OAG, representing the abstract concept of “human-object interaction”, which is conve-
niently initialized with the feature corresponding to the dotted green bounding-box, i.e., the
tight bounding-box containing both the human box (yellow) and the interacting object box

Citation
Citation
{Gu, Sun, Ross, Vondrick, Pantofaru, Li, Vijayanarasimhan, Toderici, Ricco, Sukthankar, etprotect unhbox voidb@x penalty @M  {}al.} 2018

Citation
Citation
{Kuehne, Jhuang, Garrote, Poggio, and Serre} 2011

Citation
Citation
{Sigurdsson, Varol, Wang, Farhadi, Laptev, and Gupta} 2016

Citation
Citation
{Soomro, Zamir, and Shah} 2012

Citation
Citation
{Simonyan and Zisserman} 2014{}

Citation
Citation
{Feichtenhofer, Pinz, and Wildes} 2016

Citation
Citation
{Girdhar, Ramanan, Gupta, Sivic, and Russell} 2017

Citation
Citation
{Wang, Xiong, Wang, Qiao, Lin, Tang, and Vanprotect unhbox voidb@x penalty @M  {}Gool} 2016

Citation
Citation
{Carreira and Zisserman} 2017

Citation
Citation
{Hara, Kataoka, and Satoh} 2018

Citation
Citation
{Feichtenhofer, Fan, Malik, and He} 

Citation
Citation
{Wang, Girshick, Gupta, and He} 2018

Citation
Citation
{Baradel, Neverova, Wolf, Mille, and Mori} 2018

Citation
Citation
{Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, Malinowski, Tacchetti, Raposo, Santoro, Faulkner, etprotect unhbox voidb@x penalty @M  {}al.} 2018

Citation
Citation
{Herzig, Levi, Xu, Brosh, Globerson, and Darrell} 2018

Citation
Citation
{Li, Tapaswi, Liao, Jia, Urtasun, and Fidler} 2017{}

Citation
Citation
{Yan, Xiong, and Lin} 2018

Citation
Citation
{Si, Jing, Wang, Wang, and Tan} 2018

Citation
Citation
{Wang and Gupta} 2018

Citation
Citation
{Chao, Liu, Liu, Zeng, and Deng} 2018

Citation
Citation
{Gupta, Kembhavi, and Davis} 2009

Citation
Citation
{Yao and Fei-Fei} 2012

Citation
Citation
{Gkioxari, Girshick, Doll{á}r, and He} 2018

Citation
Citation
{Ren, He, Girshick, and Sun} 2015

Citation
Citation
{Gupta, Schwing, and Hoiem} 2018

Citation
Citation
{Qi, Wang, Jia, Shen, and Zhu} 2018

Citation
Citation
{Girshick, Radosavovic, Gkioxari, Dollár, and He} 2018

Citation
Citation
{He, Gkioxari, Doll{á}r, and Girshick} 2017



4 TAN ET AL,: OBJECT AFFORDANCES GRAPH NETWORK

Video frame

Bounding-Boxes

Laptop

Bed

Input

+
Human

Conv ROIAlign

Step: 1 Step: S

…

Update

OAG

AvgPool

Global Pooling W x H

C
o

n
ca

t

Action 

class

（a） （b） （c） （d）

W x H Feature

Figure 2: OAGN overview. (a) OAGN takes video frames and ground truth human/objects
bounding-boxes as inputs. (b) RoIAlign [10, 17, 40] produces region-based features accord-
ing to the bounding-boxes (including the union of bounding-boxes). (c) Graph nodes are
iteratively updated in S steps, and they are initialized with extracted feature maps within re-
spective bounding-boxes. (d) After practical convergence, updated nodes and video features
are concatenated for action prediction.

Table 1: Parameter settings of the modified ResNet-50 [16], one option of the backbone net-
work. The resolution of input video frame is 224×224. To preserve more spatial information
in feature maps, the stride of res5 is modified from 2 to 1.

layer conv1 pool1 res2 res3 res4 res5 conv6

config 7×7,64 3×3 max

1×1, 64
3×3, 64
1×1, 256

 1×1, 128
3×3, 128
1×1, 512

 1×1, 256
3×3, 256
1×1, 1024

 1×1, 512
3×3, 512
1×1, 2048

 1×1, 512

stride 2,2 stride 2,2 ×3, stride 1 ×4, stride 2 ×6, stride 2 ×3,stride 1 stride 1
output

size 112×112 56×56 56×56 28×28 14×14 14×14 14×14

(red). Therefore, three types of nodes are present in each OAG, i.e.,: :q the human node(s),
the object nodes and the human-object interactions nodes.

Subsequently, the OAG starts iterative graph updates (visualized as S steps in Figure 2).
Although these node features are extracted from different regions and at various time stamps,
we speculate that the OAG nevertheless captures long-term spatio-temporal human-object
interaction cues through the message propagation mechanism. After practical convergence
at the final step S, we perform an average pooling over all node features and over all video
features, respectively. These two features are subsequently concatenated as the final video
representation for action category prediction.
Feature extraction. Given a video clip V = {v1,v2, ...,vT} with T sampled frames∗, all
frames are first resized to a common resolution of 224×224 (unless otherwise specified) via
bilinear interpolation, subsequently these frames are fed into one of the modified backbone
CNNs, e.g., a slightly modified version of ResNet-50 [16] as summarized in Table 1. These
modifications include another convolution layer appended after the last residue block to re-
strict the number of feature channels to a predefined value† C, and a smaller stride in the
convolution kernel in the last residual block to preserve higher feature map resolution.
Graph Initialization. Suppose Nt bounding-boxes‡ are present in frame vt , t ∈ {1,2, ...,T},

∗Typically one frame is sampled per six consecutive video frames.
†To reduce the number of parameters and alleviate computational complexity, typically C = 512.
‡Including human, objects bounding boxes and the special “human-object interaction” bounding-box.
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therefore there are N = ∑
T
t=1 Nt bounding-boxes for video clip V . We apply RoIAlign

[10, 17, 40] on each bounding-box in all feature frames, generating 7× 7×C features per
bounding-boxes, and subsequently max-pooled to 1× 1×C. These C-dimensional tensors
are represented as the initial nodes in the graph. Let Xs ∈ RN×C denote the OAG state
(i.e., values of all N nodes) at s-th iteration, s ∈ {0,1, · · · ,S}. Each row of OAG is initialed
with these C-dimensional vectors. For notational simplicity, we partition the initial state
X0 ∈ RN×C into T blocks, with each block X0

t ∈ RNt×C representing vectors from the t-th
frame, t ∈ {1,2, ...,T},

X0 =

X0
1

...
X0

T


N×C

, where X0
t =

 xxx0
t,1
...

xxx0
t,Nt


Nt×C

, (1)

where xxx0
t,Nt
∈R1×C denotes the initial value of the node corresponding to the Nt -th bounding-

box in frame t. Specifically with 3D CNNs, a fixed number T of frames are grouped together
as a “video clip” (e.g., T = 16 for I3D [3]) to compute features, which leads to reduced tem-
poral resolution (T ′ channels, T ′< T , e.g., T ′= 2 in I3D [3]) in extracted features. We conve-
niently use the bounding-boxes annotated in the frames

{
d T

2T ′ e,d
T

2T ′ e+
T
T ′ , · · · ,T −b

T
2T ′ c

}
for the above initialization (e.g., frame 4 and frame 12 for I3D [3]).
Graph Updating Strategy. During the graph iterations, we calculate the correlation score
between each pair of nodes to generate a correlation matrix, based on which we calculate
the incoming messages for each node. Subsequently, each note state is updated according to
its respective incoming messages. The correlation score f between nodes xxxi,k and xxx j,g at the
(s−1)-th iteration is defined as,

f
(

xxxs−1
i,k ,xxxs−1

j,g

)
=
(

ΘΘΘxxxs−1
i,k +bbbθθθ

)T (
ΦΦΦxxxs−1

j,g +bbbφφφ

)
, (2)

where i, j ∈ {1, · · · ,T}, k ∈ {1, · · · ,Ni}, g ∈ {1, · · · ,N j}, ΘΘΘ,ΦΦΦ ∈ RC×C , bbbθθθ ,bbbφφφ ∈ RC×1.
Parameters ΘΘΘ, ΦΦΦ, bbbθθθ , and bbbφφφ are shared among all graph nodes, and they are initiated by
sampling a Gaussian distribution with zero mean and a standard deviation of 0.001. At the
end of the graph iteration (i.e., after iteration S), ΘΘΘ, ΦΦΦ, bbbθθθ , and bbbφφφ are jointly updated with the
backbone network (e.g., ResNet-50 [16]) via back-propagation. Therefore, the correlation
matrix for video clip V at iteration (s−1) is,

F(Xs−1) =


f
(

xxxs−1
1,1 ,xxxs−1

1,1

)
· · · f

(
xxxs

1,1,xxx
s−1
T,NT

)
...

. . .
...

f
(

xxxs−1
T,NT

,xxxs−1
1,1

)
· · · f

(
xxxs−1

T,NT
,xxxs−1

T,NT

)


N×N

. (3)

Additionally, we exploit the softmax function to normalize the correlation matrix to en-
sure all its rows summing to 1. Take the node xxxi,k as an example, ∀s ∈ {1,2, · · · ,S},

T

∑
n=1

Nn

∑
m=1

fnorm
(
xxxs

i,k,xxx
s
n,m
)
= 1, (4)

where i ∈ {1, ...,T}, k ∈ {1, ...,Ni}. Subsequently, we use this normalized correlation matrix
Fnorm(Xs−1) to calculate incoming messages and the graph updates,

Xs = Xs−1 +Fnorm(Xs−1)Xs−1. (5)
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Playing with a phone Lying on a sofa None Lying on a bedReading at a book

Open a refrigerator / 

Holding a Bottle

Sitting at a table/ 

Sitting in a chair

Sitting in a bed /

Working on a laptop 
Sitting in a chair /

Playing on a laptop 

Sitting at a table/ 

Sitting in a chair

Figure 3: Samples from the Object-Charades dataset. Highlights: (1) all action instances in
the dataset involve human-object interaction; (2) multiple different action instances can be
present simultaneously; (3) human and object bounding-boxes are manually adjusted to be
as tight as possible.

After iteration S, we obtain the updated node state XS ∈ RN×C.
Video Representation Generation is achieved by merging global video-clip representations
with the OAG outputs. As shown in Figure 2, we perform an average pooling on OAG
outputs XS and obtain rOAG ∈ R1×C as rOAG = 11×NXS/N, where 11×N denote an all-ones
vector of size 1×N. Simultaneously, the global video-clip representation are average pooled
to rGlobal ∈ R1×C. We concatenate them to obtain the final video representation r ∈ R1×2C

for the final action prediction, r = [rOAG,rGlobal].

4 The Object-Charades Dataset
The Object-Charades dataset is a subset of the Charades dataset [30], where all action in-
stances involve human-object interaction, and humans and their interacting objects are anno-
tated with bounding-boxes. We briefly describe the Charades dataset and explain the Object-
Charades dataset in detail.
Charades dataset is a large-scale multi-label video dataset focusing on household activi-
ties [30]. It contains 157 categories of actions and∼9K videos of about 30 seconds in length
on average. Most of the action instances in the Charades dataset involve human-object inter-
actions.
Motivation to introduce a new dataset. As our goal is to leverage the human-object interac-
tion cues to refine the video representation and further improve action recognition accuracy.
The original Charades dataset has several characteristics making it less suitable for our goal:
1) It focuses on action recognition rather than the interaction between the human and the
object for each action instance. To evaluate the influence of human-object interaction on
action recognition, we purposefully select action instances with obvious interactions with
objects and leave out those without. 2) It does not provide object-level annotations. To eval-
uate the influence of human-object interactions on action recognition, manually annotated
object-level labels should also be provided.
Bounding-box annotations. To annotate the objects involved in action instances, we first
apply the Deformable R-FCN object detector [5, 19] pre-trained on MSCOCO [23] dataset
on all video frames of the Charades dataset, then manually examine the results and preserve
high-quality boungding-boxes. We also discard the actions with limited interacting objects
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(e.g. floor and pictures). We believe this dataset should be more suitable for evaluating the
benefit of considering human-object interaction in action recognition.
Object-Charades dataset. The Object-Charades dataset consists of 7,135 videos (5,732
training and 1,432 testing) of 52 action categories, all action instances of which involve
humans interacting with objects of 18 categories. Humans and interacting objects are anno-
tated with bounding-boxes (x1,x2,y1,y2,class). Other configurations of the Object-Charades
dataset are the same as those of the Charades dataset. Note that because Yuan et al. [42]
provided bounding-box annotations for more than 5,000 video frames from only 200 videos
of the test set of the Charades dataset, and thus it is not enough to evaluate our proposed
OAGN method.
Evaluation metrics. Object-Charades is a multi-label video action dataset. Action classifi-
cation performance is evaluated by mean average precision (mAP) metric.

5 Experiments
We conduct multiple experiments with both 2D CNNs [16] and 3D CNNs [15] as back-
bone networks and empirically prove that OAG can aggregate human-object interactions
cues across global spatio-temporal dimensions. In addition, with larger backbone networks
our OAGN achieves the state-of-the-art performance.

5.1 Implementation Details
Data pre-processing. We omit random crop, flip and other data augmentations due to the
incorporation of ROIAlign into OAGN. All video frames are resized to a common resolution
of 224×224 unless otherwise specified. For algorithms with 3D CNNs, we sample the video
clip V = {v1,v2, · · · ,vT} so that T = 16, vi+1 and vi are 6 video frames apart.
Backbone network. 2D ResNet [16] pre-trained on ImageNet [28] and 3D ResNet [15]
pre-trained on Kinetics [3] are used as the base feature extraction networks. We restrict
the number of feature channels to C = 512 and sets the spatial scale to 1 for the additional
convolutional layer.
Graph initialization. RoIAlign is applied to the feature from the last convolution layer.
Center crop is employed to generate virtual nodes for frames without any objects. A node
has a dimension of 1×512 (7×7×512 via ROIAlign and 1×1×512 via pooling).
Training. OAGN is implemented using PyTorch and trained on two Nvidia 1080Ti GPUs
with a batch size of 50 for 2D CNNs or 20 for 3D CNNs. After nodes reach practical
convergence, we perform an average pooling over all node features and over all video fea-
tures, respectively, followed by a dropout with a ratio of 0.5. These two features are sub-
sequently concatenated as the final video representation for action category prediction. We
use sigmoid-based classifier for multi-label prediction. The initial learning rate is 0.08 with
2D CNN backbones and 0.12 with 3D CNNs annealed by 0.8 every 3K iterations. We apply
a stage-wise strategy to train OAGN. We first train the OAG for 6K iterations with the pa-
rameters in the backbone networks fixed, then the entire OAGN end-to-end for another 10K
iterations. For 3D networks, each batch contains 16 frames.
Inference. For each test video 50 clips or frames are sampled. The final mAP is acquired
through max pooling over the predictions of these 50 samples.
Parameter analysis. To explore the impact of the number of iterations S used to update the
OAG on the overall performance, we plug the OAG to fixed 2D and 3D backbone networks
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respectively and set S to 1, 2 and 3. mAPs under different settings are shown in Figure 4.
Our observations include: the number of iterations has no significant impact on the recog-
nition accuracy; as the number of iterations increases, there is no substantial improvement
on recognition accuracy; graph nodes learn sufficient spatio-temporal correlation context
cue and converge in 1 iteration. Based on our observations, we set S to 1 in the following
experiments for computation efficiency.
Training with larger backbones. To examine if OAGN can function properly with other
CNNs and achieve better results with larger backbones, we substitute the default backbones
(2D ResNet-50 and 3D ResNet-50) with 2D ResNet-101 [16] pre-trained on ImageNet [28]
and I3D [3] pre-trained on Kinetics [3]. Experiment settings remain the same except for
20K more iterations for training. Results are shown in Table 2. We observe a considerable
improvement of action recognition accuracy with larger backbones in place (28.6 mAP with
ResNet-101 and 32.1 mAP with I3D).

Figure 4: Impacts of the number of
graph iterations on action recognition
accuracy.

Table 2: OAGN with larger 2D and 3D
networks.

Conv Model/Method input mAP

2D
ResNet-101 [16]

1×224×224
26.8

OAGN(ResNet-101) 27.9
OAGN(ResNet-101) 3×224×224 28.6

3D I3D [3]
16×224×224

30.5
OAGN (I3D) 32.1

Qualitative and error analysis. We visualize some sample video frames and their cor-
responding global video-clip representations in Figure 5. These global video-clip repre-
sentations are the outputs of the backbone network after layer “conv6” and are of size
512× 14× 14. A max-pooling is carried out along the channel dimension and the 14× 14
heat maps are illustrated. The highlighted areas usually contain human and their interacting
objects, which provide some intuition behind the OAGN design of focusing on such regions.
In Figure 6, we illustrate the action AP improvements/degradation of the OAGN (ResNet-50)
over the baseline ResNet-50 in 20 action categories. The top-10 AP improvement categories
and top-10 AP degradation categories are visualized in green and red colour, respectively.
Figure 6 shows that the OAGN brings larger performance gains than deteriorations.

Figure 5: Global video-clip representa-
tion visualization, extracted after layer
“conv6” of backbone network.
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Figure 6: Action AP gains versus deteri-
orations of the OAGN(ResNet-50) over the
baseline ResNet-50.
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Table 3: Action classification performance on Object-Charades dataset in mAP(%) with (a)
2D CNNs as backbone network; (b) 3D CNNs as backbone network.

2D Conv Model input mAP
VGG-16 [34]

1×224×224

16.2
ResNet-50 [16] 22.0
Asyn-TF [31] 22.6

OAGN (ResNet-50) 24.5
OAGN (ResNet-101) 3×224×224 28.6

3D Conv Model input mAP
ResNet-50 [15]

16×224×224

26.8
ResNet-101 [15] 28.0

I3D [3] 30.5
OAGN(I3D) 32.1

(a) (b)

Table 4: mAP(%) for action classification. (a) Using different part of OAGN. (b) Different
number (T) of video frame as OAGN input.

Method mAP

2D
1×

224×224

Avg-Pooling 22.0
w/ OAG 23.7
Avg-pooling + OAG (OAGN) 24.5

3D
16×

224×224

Avg-Pooling 26.8
w/ OAG 28.5
Avg-pooling + OAG (OAGN) 29.2

Model input mAP
2D ResNet-50 [16] 1×224×224 22.0

OAGN (ResNet-50) 1×224×224 24.5
OAGN (ResNet-50) 3×224×224 25.1

3D ResNet-50 [15] 16×224×224 26.8
OAGN (ResNet-50) 16×224×224 29.2

(a) (b)

5.2 Comparison with State-of-the-arts
VGG-16 [34]: VGG-16 is first pre-trained on ImageNet and subsequently fine-tuned. Asyn-
chronous Temporal Fields (Asyn-TF) [31, 32]: Popular in action classification, Asyn-TF is
utilized here with the Resnet-50 as its backbone network. 3D ResNet-101 [15]: 3D ResNet-
101 is first pre-trained on Kinetics [3] with video clips of size 16× 112× 112 and subse-
quently fine-tuned. During training, a dropout ratio of 0.5 is used.

All results are summarized in Table 3. Possibly due to the lack of explicit data argumen-
tation, the reported accuracies are relatively lower. VGG-16, Asyn-TF and 3D ResNet-101
achieve mAP of 16.2, 22.6 and 28.0, respectively. Despite with fewer parameters, all OAGN
varaints outperform their respective competing algorithms.

5.3 Ablation Study
To isolate the contributions of different components of the proposed OAGN, we conduct
multiple ablation experiments.
Effectiveness of OAG. The results are shown in Table 4 (a). Compared with baseline “Avg-
Pooling”, the pure output of OAG can get higher action recognition accuracy. In addition,
after combining the global video-clip representations with OAG outputs, the final action
recognition accuracy can be further improved with both 2D and 3D backbone networks.
Effectiveness of joint aggregation of spatio-temporal cues. We first adopt 2D CNNs as
backbones and the results are shown in Table 4 (b). By taking a single frame (T = 1) as input,
the 2D ResNet-50 achieves 20.0 mAP and the OAGN gets 12.5% relative performance gains,
indicating that the OAG can aggregate spatial human-object interaction context cues. With
multiple video frames as inputs (T = 3), OAGN performance is further improved, indicating
long-term temporal correlation cues can be captured. We also evaluate with 3D CNNs, where
our OAGN gets 8.2% relative accuracy improvements.
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Discussion. The performance gain shows that the OAG is effective with 2D or 3D back-
bones. Compared with the backbone networks, OAGN brings ∼2 gain in mAP with less
than 1% (∼0.5M) extra parameters. Possible reasons are: 1) because the nodes are initial-
ized by extracting features from different regions across multiple video frames, the graph
is able to reason the interactions between humans and objects across all spatio-temporal di-
mensions, which means that the output of the graph could carry global spatio-temporal cor-
relation cues; 2) the OAG is capable of representing humans, objects, and their relationships
with accurately annotated human and object bounding-boxes.

6 Conclusion.
In this paper, we propose OAGN, a graph-based convolutional network, for human action
recognition. OAGN incorporates spatio-temporal human-object interaction cues as object
affordances in action recognition by aggregating long-range spatial and long-term tempo-
ral context around humans and objects across video frames. We demonstrate that the pro-
posed OAGN outperforms existing state-of-the-arts on our proposed dataset Object-Charades
dataset, of which all action instances involve interaction with objects, and requires fewer pa-
rameters. We believe the experiments carried out on the OAGN reveal the importance of
exploiting human-object interactions for action recognition.
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