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Abstract— In this paper, a new multi-modal traffic scene
simulation framework with combined inputs of road image
sequences and road information from Geographic Information
Systems (GIS) is proposed. The proposed framework contains
two major steps, with the first one being a preprocessing
step, including 3D road model extraction, camera location and
orientation estimation and lane extraction from both GIS and
road image sequences. After such preprocessing, the traffic
scene reconstruction is reformulated into a 6-degree of freedom
(6DoF) pose estimation in the 3D road model. Subsequently, the
iterative closest point (ICP) algorithm is exploited for coarse
point registration by estimating the pose in the road model.
In addition, an objective function is established to incorporate
the image features (e.g., lanes) into the road model and to
refine the pose estimation. In the experiments with the publicly
available KITTI dataset, the proposed method achieves high
average Intersection-over-Union (IoU) scores as compared to
the ground truth image sequences.

I. INTRODUCTION
In recent years, the autonomous vehicle technology has

evolved rapidly, thanks to the prevalence of deep learning-
based algorithms [1]–[4]. Therefore, cost-efficient and re-
peatable evaluation methods of such autonomous driving
systems is necessary to promote robustness and safety. Cur-
rently, one of the most popular forms of such evaluations is
field test. Especially, institutions, corporations, colleges and
government agencies have cooperated to organize multiple
unmanned vehicle field contests, such as Defense Advanced
Research Projects Agency (DARPA) Grand Challenge, AI
and Intelligent Vehicles Future Challenge (IVFC), to promote
the development of autonomous driving technology. Granted
that such contests are valuable, field tests are generally
prohibitively expensive, time-consuming and generally non-
repeatable (e.g., due to mutable weather/traffic conditions).
Therefore, it is necessary to test autonomous driving systems
in a controlled, simulated environment. In addition, simu-
lation based evaluation framework can readily create rare
and potentially dangerous traffic scenes, such as in severe
accidents and inclement weather (e.g., hurricane/blizzard),
to verify the autonomous vehicles ability of handling emer-
gency.
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In general, real traffic scenes consist of both static ele-
ments (e.g., roads, traffic signs, traffic lights) and dynamic
elements (e.g., vehicle, pedestrians). The objective of traffic
simulation is to reconstruct all the traffic elements in space-
time continuum. Based on the technologies and source
data, the virtual traffic scene reconstruction methods can
be categorized into two categories [5]. The first category
of methods are based on computer graphics and virtual
reality technologies, and rely heavily on 3D graphics engine.
For example, the PreScan software developed by TASS
International Corporation can integrate traffic elements such
as roads, traffic signs, vehicles and pedestrians, to construct
various traffic scenes. However, such fully synthetic virtual
traffic scenes are commonly oversimplified as compared
to real traffic scenes, therefore, simulation tests based on
oversimplified scenes might be unconvincing in evaluating
autonomous driving systems.

Alternatively, another category of traffic scene reconstruc-
tion methods are based on multi-sensors data of real traffic
scenes, which are either captured by vehicle equipped with
multi-sensors (KIT vehicle [6]) or geo-sensing satellites.
Nico Cornelis et al. [7] reconstructed 3D urban traffic
scenes containing road, buildings and objects with two video
streams and Global Positioning System (GPS) information.
Li et al. [8], [9] reconstructed 3D traffic scenes from traffic
image sequences. The simulated virtual traffic scene in [8],
[9] has implemented functionalities such as virtual touring at
various speed, virtual touring in any perspective (i.e., from
arbitrary camera location and orientation) and panorama
views.

In this paper, we utilize multi-model data (road image
sequence and GIS information) to construct traffic scenes,
especially the road ways, where the location, orientation and
physical dimensions of these simulated roadways accurately
accord with those from the road image sequences after
reprojection. Unlike traditional 3D reconstruction methods,
the proposed new framework reconstructs simulated traffic
scenes through estimating the location and orientation of
the roadway (i.e., 6DOF estimation), including the camera
location/orientation and the road model. Through refining
the pose of road model to accord with the image sequence,
accurate registration can be achieved in the simulated traffic
scenes.

The main contributions of this work are as follows.
• This paper proposes a new multi-modal traffic scene

reconstruction framework, which also utilizes the 3D
model of the image sequence and road to construct the
traffic scene by two registration steps. Different from
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Fig. 1: Overview of the proposed pipeline

existing 3D reconstruction methods, the registration is
implemented through estimating the pose of roadways
during a coarse-to-fine process.

• In the registration stage, a new objective function is
proposed to guarantee the consistency between the
reconstructed 3D model and the captured road image
sequence.

II. RELATED WORK
In recent years, there are many image-based model meth-

ods for traffic scene reconstruction, thanks to the rapid
advancements in computer vision techniques [10] and remote
sensing research [11]–[13]. The most popular methods in-
clude structure from motion (SfM), multi-view stereo (MVS)
[14], Simultaneous localization and mapping (SLAM), etc.
SfM methods can construct a large scene from the images
in network. In general, the bundle adjustment is employed
to optimize the recovered 3D points in the post-processing
stage. The successful examples are that Agarwal [15] recon-
structed the Rome city from the community photo collec-
tions(Flickr); Heinly [16] utilized 100 million image from
YAHOO to model the world. Thus, the advantage of these
methods is flexible on input images, while the limitation is
that the reconstructed 3D points are so sparse to contain any
solid geometry. In order to overcome the sparsity problem.
Many researchers proposed the MVS methods [17], which
aim to find best match for all pixels. Thus, in generally,
the feature correspondences of any pixel can be obtained
by searching in the reference image. In addition, some
researchers study the vision-based SLAM algorithms to
acquire the accurate visual odometry and traffic scene model
simultaneously. For example, Andreas Geiger [18] utilize
a circle of four images, i.e.left and right images of two
consecutive frames, to obtain robust feature correspondences
for visual odometry and scene reconstruction. The main
advantage of SLAM method is real time.

However, all mentioned above can be summarized as the
bottom-to-up methods and the reconstructed scene lacks the
semantic information. Namely, it is hard to distinguish the

road, building and vehicles etc. from the scene. In order to
make semantic scene, Cornelis [7] added the detection algo-
rithm to the SfM framework and the reconstructed urban city
includes roads, building and movable objects. Furthermore,
some researchers aim to model the traffic scene for vehicle
simulation test. In [9], the ‘floor-wall’ model, which divided
a traffic scene into road plane, right wall, left wall and back
wall, was employed to construct scenes for unmanned vehicle
test.

The reminder of this paper is organized as follows: Section
III provides an overviews of the proposed method, including
the problem definition and the proposed framework. Section
IV describes preprocessing details about the multi-model
data (GIS, image sequence). Multi-model data inputs are
combined and registered in traffic scenes in two stages, as
described in section V. Section VI presents the experimental
results and corresponding analyses. Finally the conclusions
and potential future work are provided in section VII.

III. OVERVIEWS
A. Problem Formulation

As is shown in Fig 1, Given the image sequence, camera
intrinsic matrix K and the GIS information of the corre-
sponding road, the traffic scene containing images sequence
and road can be constructed. In this problem, the road model,
the location, orientation of the road and each image are
unknown. Thus, in order to construct the traffic scene from
image sequence and GIS information, the road model must
be generated. In addition, location (i.e. translation tm) and
orientation (i.e. rotation Rm) of the road model, the location
(i.e. translation ti) and pose (i.e. rotation Ri) of the ith image
must be accurately estimated.

B. the Pipeline of the Proposed Method

To solve the problem mentioned in Sec.III.(A), our method
is proposed and shown in the Fig 1. In the pre-processing
stage, our method first makes the road model from the GIS
information(the details in Sec.IV.(A)), In parallel, combi-
nation of the image sequence and intrinsic matrix K can



recover the rotation Ri and translation ti (in Sec.IV.(B)).
To estimate the location tm and orientation Rm of the
road model in the registration stage, the solution includes
two steps: point registration and image registration. Point
registration is to utilize the iterative closest point (ICP)
method [19] [20] to estimate the Rm and tm coarsely (in
Sec.V.(A)). Finally, in the image registration, the Rm and tm
(i.e. 6DoF) of the road model is refined by optimizing the
objective function, which reduces the pixel errors between
the image and reprojected region of the road model (in
Sec.V.(C)).

IV. MULTI-MODEL DATA PREPROCESSING

In this paper, multiple modalities of sensors are exploited
to capture the road and traffic information. Due to the limita-
tion of such sensors [21], [22], it is challenging to match and
perfectly calibrate such multi-model data directly. Therefore,
it is necessary to pre-process the multi-modal data before
combining them and registering them in reconstructed traffic
scenes. Specifically, two data modalities (i.e., GIS and image
sequence) are employed in this paper. This preprocessing
includes three stages: 3D road model generation from GIS
information, poses of viewpoints (odometry) estimation from
image sequences and lanes estimation from images.

A. Road Model

The 3D road model utilized in this paper is inspired by
the corridor model [8] except for the right and left walls.
Especially, we only have the road surface. To acquire the
road model from the Google Earth, we first localize the road
by start and end landmarks (the yellow landmarks in Fig. 2),
Then the lanes of the road are labeled by nodes in the Google
Earth (the white lines in Fig. 2). After exporting the labeled
files, the nodes of lanes are converted from the WGS84
[23] to ENU coordinate. Concretely, Given the longitude λ,
latitude φ and height h, the point can be converted into
ECEF coordinate by Eq. (1). Without loss of generality,
the point p0(λ0, φ0, h0) is regarded as the origin of ENU
coordinate and any point relative to the ENU coordinate can
be calculated by Eq. (2).

x = (a/χ+ h)cos(φ)cos(λ)

y = (a/χ+ h)cos(φ)sin(λ)

z = (a(1− e2)/χ+ h)cos(φ)sin(λ)

(1)

Fig. 2: the road model from the Google Earth

where χ =
√
1− e2sin2(φ), a = 6378137, e2 ≈ 6.69 ×

10−3

piENU = RENU
ECEF × (piECEF − p0ECEF )

RENU
ECEF =

[
−sin(λ0) cos(λ0) 0

−sin(φ0)cos(λ0) −sin(φ0)sin(λ0) cos(φ0)
cos(φ0)cos(λ0) cos(φ0)sin(λ0) sin(φ0)

]
(2)

B. Odometry

In this part, given the image sequence and the intrinsic
matrix K, the location Ri and orientation ti of the ith
image are estimated. This paper utilizes the ORB feature [24]
based SLAM method (i.e.ORB-SLAM2 [25]) to estimate the
viewpoints of image sequences. To extract the ORB feature,
we set six-level pyramid and extract one thousand amount
of features [24] for an image.

C. Lane

In Fig.1, the lanes are extracted from images. In order
to obtain accurate lanes position, we label the straight lanes
manually in some frames. Finally, the line is linearly fitted
by the labeled points.

V. REGISTRATION

Since the viewpoints and the road model is measured
in their own 3D coordinate, we want to register both the
viewpoints and road model in a coordinate. As is mentioned
in Sec. III(B), the process of registration includes two stages:
point registration and image sequence registration.

A. Point Registration

In this stage, we utilize the nodes of a road lane in
the model to represent the road. The viewpoints of image
sequences can be also regarded as the point cloud. Thus,
the iterative closest point (ICP) algorithm [19], [20] can
be employed to match the road and viewpoints. Then the
viewpoints can be registered in the road model. Fig. 3
shows a point registration example by ’Point-to-Point’ ICP
algorithm [19], [20]. It is obvious that the viewpoints can
match the one of lanes in both curve and straight roads.
However, the viewpoints do not register in the accurate
position but in the range of the road surface.
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B. Projected Point

Before image sequence registration, the suitable nodes of
the road model need to be selected for their corresponding
viewpoints. The principle to select nodes of road model for
each viewpoint is that the road nodes can be seen in the
viewpoint. In other words, the points must locate in the
region of a view frustum. As is shown in the blue region
of Fig. 4, a view frustum can be determined by five planes
(up plane, down plane, left plane, right plane, image plane).
Given the intrinsic parameters K and image size, the planes
can be expressed in Eq. (3), where pi,i∈{ul,dl,dr,ur} are the
pixel coordinate of up-left, down-left, down-right, up-right
point in the image and ni,i∈{d,l,r,u} are the normal vectors
of four planes (shown in Fig. 4). Thus, the region of view
frustum D(f) can be expressed in Eq. (4).

z − f = 0;nT
i p = 0; i ∈ {u, d, l, r}

where, nl = (K−1pul)× (K−1pdl);

nu = (K−1pul)× ((K−1pur))

nr = (K−1pdr)× ((K−1pur));

nd = (K−1pdr)× ((K−1pdl)

(3)

D(f) = {p|nT
i p > 0; z − f > 0; i ∈ {l, r, u, d}} (4)

In terms of selecting the suitable points for ith viewpoint.
all the nodes of road model first are converted into the ith
camera coordinate by the rotation matrix Ri and transform
vector ti. Then the nodes satisfying the Eq. (4) are in the
view frustum D(f) (red points in Fig. 4). Finally, we select
top ten nodes near to ith viewpoint for each lane.

C. Image Sequence Registration

In this stage, the objective function is designed to achieve
the image sequence registration. After point registration, the
road model still does not consist with the image sequence
strictly. Thus, we regard the road model as the rigid object,
and the translation can make the road model complies the
image sequence.

We have ith rotation matrix, translation vector Ri, ti and
intrinsic matrix K, an amount of N lane lines {l1i , l2i , ..., lNi }
in ith image (the number of lines depends on the image) and
the number of Q nodes {P j1

i , P j2
i , ...P jk

i , ..., P
jQ
i } of the

road model for the jth lane of the ith image in the model
coordinate. Assume that the road model can consist with

the image sequence after rotation matrix Rm and translation
vector tm

In terms of the ith viewpoint, the nodes of the jth lane
can be projected into the image according to the following
equation.

pjk
i = K(Ri(RmP jk

i + tr) + ti) (5)

However, the pjk
i is in homogeneous format. Thus, the vector

m =
[
0 0 1

]
is employed to extract the z value of the

projected point pjki , and the true pixel position is pjk
i

(mpjk
i )

.
Then, the Euclidean distance between the projected point
and lane is calculated by the following equation.

Djk
i = ‖(lji )

Tpjk
i ‖2 (6)

In terms of all viewpoints, summation of all the Euclidean
distance is the objective function.

E(Rm, tm) =

M∑
i=1

N∑
j=1

Q∑
k=1

Djk
i (7)

As is known, the matrix Rm has only three degree of
freedom. Thus, the matrix Rm are replaced by the rotation
axis v and angle θ, namely Rodrigues [26] equation Rm =
cos(θ)I + sin(θ)[v]× + (1 − cos(θ))vvT . Thus, the final
format of the objective function is shown in Eq. (8), where
the rotation axis v is the unit vector; the axis degree θ is in
range of −π/3 and π/3 radian; and the components of the
translation vector tm, i.e. tm,x, tm,y , tm,z , are in range of
−5 and 5 meter.

E(v, θ, tm) =

M∑
i=1

N∑
j=1

Q∑
k=1

Djk
i (v, θ, tm)

s.t. ‖v‖2 = 1

− π/3 < θ < π/3

− 5 < tm,i < 5, i ∈ x, y, z

(8)

For optimization, it is hard to get close-form solution for
the objective function (Eq. (8)). Thus, the gradient descent
method based iterative scheme is employed for optimization.
Meanwhile, a good initial value and suitable step size is must.
In actual, the initial value of the rotation axis v, rotation
angle θ and translation vector tm are the normal vector of
the road, 0 degree and zero vector respectively. The interior
algorithm [27] are exploited for iterative updating. To avoid
obtaining the local minimum by single initial value, we
exploit the scatter-search mechanism [28] to acquire multiple
initial values in the scope of constraints. Through comparing
all the local solutions, we can find the global minimum.

VI. EXPERIMENT

A. Experiment Preparation

1) Dataset: The raw KITTI dataset [6] are exploited and
processed for evaluating our method. In order to test our
method in all aspects, we select four groups of data, i.e.
city 09 26 14, city 09 26 96, road 09 26 15, road 09 26 28,
and each of the image sequences has 227, 240, 240, 170



frames respectively. As is shown in Fig. 5, the four group
image sequence contains both curved and straight roads.
For each group, the image sequence, and intrinsic matrix
of camera has been extracted.

2) Metrics: In this paper, we want to evaluate our method
in the 2D space. Concretely, If the 3D road model is located
in accurate position, the reprojected region of 3D road model
is strictly the same with that of the image, namely the
reprojection errors between road model and image are as
small as possible. Furthermore, the reprojection errors of
all frames of the image sequence is small, when the 3D
road registers accurately. Thus, Similar to [29], we utilize
the intersection over union (shown in Eq. (9)) between
reprojected road model and the road region of each image.

IoU =
S(reprojection)

⋂
S(Groundtruth)

S(reprojection)
⋃
S(Groundtruth)

(9)

B. Results and Analyses

After the image sequences and road model registration, the
road and viewpoints of sequences are integrated into a whole
scene. Fig. 5 shows point structure of the traffic scenes in
the vertical view. In Fig. 5, the red, blue and black points in-
dicate the road boundaries, lane and viewpoints respectively.
Obviously, the viewpoints are in the scope between right road
boundary and central lane, which indicates that the vehicle
keeps right for driving and accords with the reality.

The IoU scores of image sequences are shown in the Fig.
6, where the red line indicates that the IoU score varies
with the frame, and the blue line represent average IoU
of all frames. The IoU scores in Fig. 6 (a),(b),(c) and (d)
approximately range from 0.88 to 0.98, from 0.89 to 0.99,
from 0.88 to 0.99, and from 0.905 to 0.991 respectively. The
average IoU scores of each sequence are 0.938, 0.951, 0.949,
0.958 respectively. As a result, the reprojected region of the
3D road model basically accords with the road regions of the
image sequences after registration. In addition, the proposed

method has good performance in both straight and curve
roads.

However, as is shown in Fig. 6, the IoU scores of some
successive frames are much lower than the average score.
In general, it appears that IoU score gradually descends and
then ascends. The typical examples are shown in Fig. 6(b)
(from the 70th to120 frames), in Fig. 6(c) (from the 70th to
the 100th frames) and in Fig. 6(d) (from the 40th to 60th
frames). What kind of factor influences the performance of
the proposed method. In terms of ‘city09 26 0096’ sequence,
the slant angle of the road changes from 70th to 120th
frames. For ‘road09 26 0015’ sequence, the left boundary
of road suddenly varies in the Fig. 5(c), which brings about
the width of the road narrow. Meanwhile, the change of the
width of the road results in the low IoU scores from 40th to
60th frames in Fig. 6(c). As to ‘road 09 26 0028’ sequence,
the viewpoints from 40th to 60th frames are located in the
turning of the road, which results in the low IoU scores from
40th to 60th frames in Fig. 6(d). Thus, it is obvious that
the IoU scores descend gradually when the road model does
not consist with the real road strictly, especially in some
suddenly changing sections.

In addition, we observe that the IoU scores vary dramat-
ically between adjacent frames, which leads to the serrated
curves in Fig. 6. We speculate that this is caused by the
noisy estimations of poses of viewpoints by the SLAM
[25] method. The statistics of all four image sequences are
summarized in Table I, with percentage of frames achieving
predefined IoU scores. From Fig. 5(d) and last row of Table
I, it is evident that the proposed method is robust to both
straight and curvy roadways.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a new two-stage traffic scene
reconstruction framework that exploits multi-model informa-
tion (image sequence, GIS). In the first stage, a 3D road
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TABLE I: the statistical results of IoU scores

Image Sequence
the number IoU scores

of the frames >90% >94% >98%

City09 26 0014 227 96.04% 43.61% 3.08%

City09 26 0096 240 96.67% 77.50% 19.58%

Road09 26 0015 240 94.58% 72.58% 34.17%

Road09 26 0028 170 100.00% 82.35% 11.18%

model and viewpoints are obtained from the GIS information
and image sequences, respectively. In the second stage,
the iterative closest point (ICP) algorithm is utilized for
estimation of the pose of roads. Subsequently, the pose is
refined by the proposed new objective function and the traffic
scene reconstruction is achieved. Quantitative experiments
demonstrate that the IoU scores are almost consistently
higher than 0.9 and the reconstructed scenes correlate highly
with the image sequences.

For potential future work, we are planning to investigate
in three aspects, including a more robust automatic lane
detection algorithm, the few failure cases of the proposed
framework which typically involves abrupt turns in roads
and even more complex traffic scene such as urban road
intersections.
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