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Abstract—It is a challenging task to extract segmentation mask
of a target from a single noisy video, which involves object
discovery coupled with segmentation. To solve this challenge,
we present a method to jointly discover and segment an object
from a noisy video, where the target disappears intermittently
throughout the video. Previous methods either only fulfill video
object discovery, or video object segmentation presuming the
existence of the object in each frame. We argue that jointly
conducting the two tasks in a unified way will be beneficial. In
other words, video object discovery and video object segmenta-
tion tasks can facilitate each other. To validate this hypothesis,
we propose a principled probabilistic model, where two dynamic
Markov networks are coupled – one for discovery and the other
for segmentation. When conducting the Bayesian inference on
this model using belief propagation, the bi-directional message
passing reveals a clear collaboration between these two inference
tasks. We validated our proposed method in five datasets. The
first three video datasets, i.e., the SegTrack dataset, the YouTube-
Objects dataset, and the Davis dataset, are not noisy, where all
video frames contain the objects. The two noisy datasets, i.e.,
the XJTU-Stevens dataset, and the Noisy-ViDiSeg dataset, newly
introduced in this paper, both have many frames that do not
contain the objects. When compared with state-of-the-art, it is
shown that although our method produces inferior results on
video datasets without noisy frames, we are able to obtain better
results on video datasets with noisy frames.

Index Terms—Object segmentation, Object discovery, Dynamic
Markov Networks, Probabilistic graphical model.

I. INTRODUCTION

THE problem of separating out a foreground object from
the background across all frames of a video is known
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Fig. 1. Illustration of the proposed joint video object discovery and segmen-
tation framework.

as video object segmentation. The goal is to label each pixel
in all video frames according to whether it belongs to the
unknown target object or not. The resulting segmentation is
a spatio-temporal object tube delineating the boundaries of
the object throughout a video. Such capacity can be useful
for a variety of computer vision tasks, such as object centric
video summarization, action analysis, video surveillance, and
content-based video retrieval.

Video object segmentation has received great progress in
recent years, mainly including fully automatic methods [1],
[2], [3], [4], [5], [6], [7], [8], [9], [10], semi-supervised
methods [11], [12], [13], [14], [15], [16], and interactive
methods [17], [18], [19], [20], [21]. Nevertheless, there are
still three issues need to be further addressed.

Firstly, an unrealistically optimistic assumption is often
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made in these methods, that the target object is present in
all (or most) video frames. Therefore, methods robust to a
large number of “noisy” frames (i.e., irrelevant frames devoid
of the target object) are urgently needed.

Moreover, most of them emphasized on leveraging the low-
level features (i.e., color and motion) or contextual information
shared among individual or consecutive frames to find the
common regions, and simply employed the short-term motion
(e.g., optical flow) between consecutive frames to smooth the
spatio-temporal segmentation. Therefore, they often encoun-
tered difficulties when the objects exhibit large variations in
appearance, motion, size, pose, and viewpoint.

Furthermore, several methods [4], [22], [23], [24], [25],
[26] employed the mid-level representation of objects (i.e.,
object proposals [27]) as an additional cue to facilitate the
segmentation of the object, with object discovery and object
segmentation conveniently isolated as two independent tasks
and performed in a two-step manner [28], [29]. Unfortunately,
the disregard of their dependencies often leads to suboptimal
performances, e.g., object segmentation dramatically failing
at focusing on the target, object discovery providing wildly
inaccurate object proposals.

To address the above three issues, we present a method to
jointly discover and segment an object from a single video
with many noisy frames, benefiting from the collaboration of
object discovery and object segmentation. Fig. 1 illustrates the
proposed framework. We propose a principled probabilistic
model, where one dynamic Markov Network for video object
discovery and one dynamic Markov Network for video object
segmentation are coupled. When conducting the Bayesian
inference on this model using belief propagation, the bi-
directional propagation of the beliefs of the object’s posteriors
on an object proposal graph and a superpixel graph reveals a
clear collaboration between these two inference tasks. More
specifically, object discovery is conducted through the object
proposal graph representing the correlations of object propos-
als among multiple frames, which is built under the help of the
spatio-temporal object segmentation tube obtained by object
segmentation on the superpixel graph. Object segmentation is
achieved on the superpixel graph representing the connections
of superpixels, which is benefited from the spatio-temporal
object proposal tube generated by object discovery through
the object proposal graph.

We validated our proposed method in five video datasets,
including 1) object segmentation from a single video without
noisy frames on three video datasets where all video frames
contain the objects, i.e., the SegTrack dataset [30], [31], the
YouTube-Objects dataset [32], and the Davis dataset [33], and
2) joint object discovery and segmentation from a single video
with noisy frames on two video datasets where the videos in
both datasets have many frames not containing the objects, i.e.,
the XJTU-Stevens dataset [34], [35], and the Noisy-ViDiSeg
dataset, newly introduced in this paper. When compared with
state-of-the-art, it is shown that although our method produces
inferior results on video datasets without noisy frames, we
are able to obtain better results on video datasets with noisy
frames. Indeed, the more noisy frames the videos contain, the
better our method performs when compared with competing

methods.
The key contributions of this paper are:
• We present an unsupervised method to jointly discover

and segment an object from a single noisy video, where
the target object disappears intermittently throughout the
video.

• We propose a principled probabilistic model, where two
dynamic Markov networks are coupled – one for discov-
ery and the other for segmentation.

• To accurately evaluate our proposed method, we establish
a noisy video object discovery and segmentation dataset,
named Noisy-ViDiSeg dataset, in which the overall per-
centage of noisy frames is up to 33.1%.

The paper is organized as follows. Section II discusses
the related work. Then, we present the principled proba-
bilistic model for joint object discovery and segmentation in
Section III, the inference algorithm in Section IV, and the
implementation details in Section V. Experimental results are
provided in Section VI. Finally, we conclude the paper in
Section VII.

II. RELATED WORK

We review related work in video object segmentation,
mainly including unsupervised and supervised methods. Since
our proposed method leverages the object proposals, we also
review the object proposal based video object segmentation
methods. Moreover, as some video object co-segmentation
methods can separate a common object from multiple noisy
videos, we briefly introduce them.

A. Unsupervised Video Object Segmentation

Unsupervised video object segmentation methods aim at
automatically extracting an object from a single video. These
methods exploited features such as clustering of point trajecto-
ries [1], [2], motion characteristics [3], appearance [4], [5], or
saliency [3], [6], [7] to achieve object segmentation. Recently,
Jang et al. [8] separated a primary object from its background
in a video based on an alternating convex optimization scheme.
Jain et al. [9] proposed an end-to-end learning framework
to combine motion and appearance information to produce a
pixel-wise binary segmentation for each frame. Luo et al. [10]
proposed a complexity awareness framework which exploits
local clips and their relationships.

B. Supervised Video Object Segmentation

Supervised video object segmentation methods require user
annotations about a primary object, and can be roughly cate-
gorized into label propagation based methods and interactive
segmentation methods.

In label propagation based segmentation, an object is manu-
ally delineated in one or more frames, and then propagated to
the remaining ones [11], [13], [14], [15], [16]. Badrinarayanan
et al. [11] proposed a probabilistic graphical model for label
propogation. Xiang et al. [12] proposed an online web-data-
driven framework for moving object segmentation with online
prior learning and 3D Graph cuts. Jain and Grauman [13]
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proposed a foreground propagation method using higher order
supervoxel potentials. Tsai et al. [14] considered video ob-
ject segmentation and optical flow estimation simultaneously,
where the combination improved both. Marki et al. [15]
utilized the segmentation mask of the first frame to construct
appearance models for the objects, and then inferred the
segmentation by optimizing an energy on a regularly sampled
bilateral grid. Caelles et al. [16] adopted Fully Convolutional
Networks (FCNs) to tackle video object segmentation, given
the mask of the first frame.

In interactive segmentation, user annotations on a few
frames are iteratively added during the object segmentation
procedure [17], [18], [19], [20], [21]. Although they can
guarantee a high quality segmentation, the needs of tedious
human efforts render them unable to handle a large number of
videos. Thus, they are only suitable for specific applications,
such as video editing and post-processing.

C. Object Proposal Based Video Object Segmentation

A large number of methods [4], [22], [23], [24], [25],
[26] leveraged the notion of “what is an object” (i.e., object
proposals [36], [27]) to facilitate video object segmentation.
Lee et al. [4] automatically discovered key segments and
grouped them to predict the foreground object in a video. Ma
and Latecky [22] cast video object segmentation as finding a
maximum weighted clique in a locally connected region graph
with mutex constraints.

Zhang et al. [23] segmented the primary video object
through a layered directed acyclic graph, which combined
unary edges measuring the objectness of the object proposal
and pairwise edges modeling the affinities between them.
Fragkiadaki et al. [24] segmented the moving objects by rank-
ing spatio-temporal segment proposals according to a moving
objectness. Perazzi et al. [25] employed a fully connected
spatio-temporal graph built over object proposals for video
segmentation. Koh and Kim [26] identified the primary object
region from the object proposals per frame by an augmentation
and reduction process, and then achieved object segmentation.

D. Video Object Co-segmentation

There are several methods focusing on video object co-
segmentation from multiple videos [37], [38], [39], [40], [34],
[35], [41], where the numbers of both the object classes and
object instances are unknown in each frame and each video.
Chiu and Fritz [37] proposed a non-parametric algorithm to
cluster pixels into different regions. Fu et al. [38] presented
a selection graph to formulate correspondences between dif-
ferent videos. Lou and Gevers [39] employed the appearance,
saliency and motion consistency of object proposals together
to extract the primary objects.

Zhang et al. [40] proposed an object co-segmentation
method by selecting spatially salient and temporally consistent
object proposal tracklets. Wang et al. [34], [35] proposed a
spatio-temporal energy minimization formulation for video ob-
ject discovery and co-segmentation from multiple videos, but
the method needed to be bootstrapped with a few frame-level

labels. However, they almost always encountered difficulties
when the videos have a large number of noisy frames.

The differences between our method and the above methods
are two-fold. One is that we address the problem of simultane-
ously discovering and segmenting the object of interest from
a single video with a large number of noisy frames. The other
one is that we cast the two tasks of video object discovery and
video object segmentation into a principled probabilistic model
by coupling two dynamic Markov networks, in which object
discovery and object segmentation can benefit each other. The
proposed method is the first one that can jointly discover and
segment the object from a single noisy video with a principled
probabilistic model.

III. MODEL

Given a video V = {ft}Tt=1 with a significant number of
noisy frames, our goal is to jointly find an object discovery
labeling L and an object segmentation labeling B from V.
L = {Lt}Tt=1 is a spatio-temporal region (object) proposal
tube of V. Lt = {lt,i}Ki=1 is the object discovery label of each
frame ft, where lt,i ∈ {0, 1} and

∑K
i=1 lt,i ≤ 1, i.e., no more

than one region proposal among all the K proposals in ft will
be identified as the object. B = {Bt}Tt=1 is a spatio-temporal
object segmentation tube of V. Bt = {bt,j}Jj=1 is the object
segmentation label of ft, where bt,j ∈ {0, 1} denotes that each
of the J superpixels either belongs to the object (bt,j = 1) or
the background (bt,j = 0).

The image observations associated with L, Lt, B, and Bt

are denoted by O = {Ot}Tt=1, Ot = {ot,i}Ki=1, S = {St}Tt=1

and St = {st,j}Jj=1, respectively. ot,i and st,j are the repre-
sentations of a region proposal (e.g., generated by [27]) and a
superpixel (e.g., computed by SLIC [42]), respectively.

Specifically, the beneficial information are encouraged to
be propagated between the joint inference of L and B, and
hence video object discovery and video object segmentation
can naturally benefit each other. As illustrated in Fig. 2 (a), we
employ a Markov network [43], [44], [45] to characterize the
joint object discovery and segmentation from V. The undi-
rected link represents the mutual influence of object discovery
and object segmentation, and is associated with a potential
compatibility function Ψ(L,B). The directed links represent
the image observation processes, and are associated with two
image likelihood functions p(O|L) and p(S|B). According to
the Bayesian rule, it is easy to obtain

p(L,B|O,S) =
1

ZQ
Ψ(L,B)p(O|L)p(S|B), (1)

where ZQ is a normalization constant. The above Markov
network is a generative model at one time instant.

When putting the above Markov network into temporal
context by accommodating dynamic models, we construct two
coupled dynamic Markov networks as shown in Fig. 2 (b). The
subscript t represents the time index. In addition, we denote the
collective image observations associated with the object dis-
covery labels from the beginning to t by O−→t = {O1, . . . ,Ot},
and reversely from the end to t by O←−t = {OT , . . . ,Ot}.
The collective image observations associated with the object
segmentation labels are built in the same way, i.e., S−→t =
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Fig. 2. The (a) Markov network and (b) the two coupled dynamic Markov
networks for joint video object discovery and segmentation.

{S1, . . . ,St} and S←−t = {ST , . . . ,St}. In this formulation,
the problem of joint video object discovery and segmentation
from a single noisy video is to perform Bayesian inference of
the dynamic Markov networks to obtain the marginal posterior
probabilities p(Lt|O,S) and p(Bt|O,S).

IV. INFERENCE

We first perform Bayesian inference of the Markov network
in Fig. 2 (a) to obtain the marginal posterior probabilities
p(L|O,S) and p(B|O,S). With loop-less graph models in
Bayesian inference, belief propagation guarantees the exact
inference through a local message passing process [46], [47].
As is the case in Fig. 2 (a), Bayesian inference is performed
using belief propagation. For ease of reading, the detailed
derivation of the formula for the inference is summarized

in Appendix I. They are calculated by iterating the message
passing until convergence as

p(L|O,S) ∝ p(O|L)mBL(L), (2)
p(B|O,S) ∝ p(S|B)mLB(B), (3)

where mBL(L) and mLB(B) are the local messages passing
from B to L and from L to B, respectively.

Then, we generalize to infer the marginal posterior probabil-
ities p(Lt|O,S) and p(Bt|O,S) on the two coupled dynamic
Markov networks in Fig. 2 (b), as detailed in Appendix II.
They are computed by combing the incoming messages from
both its forward and backward neighborhood as

p(Lt|O,S) = p(Ot|Lt)mBL(Lt) (4)

×
∫
Lt−1

p(Lt|Lt−1)p(Lt−1|O−→t−1, S−→t−1)dLt−1

×
∫
Lt+1

p(Lt|Lt+1)p(Lt+1|O←−t+1, S←−t+1)dLt+1,

p(Bt|O,S) = p(St|Bt)mLB(Bt) (5)

×
∫
Bt−1

p(Bt|Bt−1)p(Bt−1|O−→t−1, S−→t−1)dBt−1

×
∫
Bt+1

p(Bt|Bt+1)p(Bt+1|O←−t+1, S←−t+1)dBt+1,

where mBL(Lt) and mLB(Bt) are messages updating at
time t from Bt to Lt and from Lt to Bt in both di-
rections. p(Lt−1|O−→t−1, S−→t−1) and p(Bt−1|O−→t−1, S−→t−1) are
the inference results at the previous time step t − 1, and
p(Lt+1|O←−t+1, S←−t+1) and p(Bt+1|O←−t+1, S←−t+1) are the infer-
ence results at the next time step t+1. Fig. 3 illustrates the in-
ference process of the two coupled dynamic Markov networks
to obtain the joint video object discovery and segmentation.

V. IMPLEMENTATION DETAILS

In this section, we further present the detailed definitions of
the likelihood functions, the compatibility functions, and the
dynamic models of object discovery and object segmentation.

A. Likelihood Functions

Likelihood function of object discovery. As illustrated in
Fig. 4, the object proposals generated for each frame (e.g.,



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 12, DECEMBER 2018 5

Fig. 4. Illustration of three types of object proposals: (a) object region, (b)
possible object region, and (c) non-object region.

by [27]) have three forms: (1) object region, which is part of
(or exactly) the object; (2) possible object region, which si-
multaneously contains parts of the object and the background;
and (3) non-object region, which is part of (or exactly) the
background.

It is ideal to select the “object region” that almost exactly
contains the object instead of the “possible object region”
and “non-object region”. Then the question becomes: how
to measure the confidence of a region being an object? We
identified three useful measures: (1) saliency, which indicates
that a region being most salient is more likely to be an
object; (2) objectness, which requires the appearance of a
region to be typical to a whole object; and (3) motility, which
requires a region to have distinct motion patterns relative to
its surrounding.

Thus, we define an object score by combining the above
three measures to estimate how likely an object proposal ot,i
is to be a whole object as

r(ot,i) = rs(ot,i) · ra(ot,i) · rm(ot,i), (6)

where rs(ot,i) is a saliency score, which is the mean value
of the saliency values (e.g., computed by [48]) within ot,i;
ra(ot,i) is an objectness score denoting the confidence that ot,i
contains an object, which is computed by scoring the edge map
described in [49]; and rm(ot,i) is a motion score, measuring
the confidence that ot,i is a coherently moving object. It is
computed similarly to ra(ot,i), but replacing the edge map
with the motion boundary map [50].

Then, the likelihood function p(Ot|Lt) of object discovery
is calculated as

p(Ot = ot,i|Lt) = r̂(ot,i); i ∈ {1, · · · ,K}, (7)

where r̂(ot,i) is the object score normalized across V, and K
is the number of proposals that Ot contains.
Likelihood function of object segmentation. The object
proposals in the spatio-temporal object proposal tube of V
are treated as foreground objects, and the remaining parts are
naturally treated as background. We learn two color Gaussian
Mixture Models (GMMs) for the object and the background
across V, and denote them as h1 and h0, respectively. The
likelihood function of object segmentation is then defined as

p(St = st,j |Bt) = hbt,j (st,j); j ∈ {1, · · · , J}, (8)

where J is the number of superpixels that St contains.

t

Spatio-temporal object segmentation tube

Fig. 5. The object proposals ranked by the compatibility function based on
the spatio-temporal object segmentation tube obtained by object segmentation.

B. Compatibility Functions

The object proposal selected by object discovery should
have a large overlap with the foreground object obtained
by object segmentation. Thus, the compatibility function
ΨLB(Lt,Bt) (from Lt to Bt) is defined as

ΨLB(Lt,Bt) = IoU(ot,i,Bt(1)); i ∈ {1, · · · ,K}, (9)

which means the intersection-over-union score (IoU) of ot,i
and the segmented foreground Bt(1) of frame ft, calculated
by Eq. (16). The object proposals ranked by the compatibility
function are illustrated in Fig. 5.

The compatibility function ΨBL(Bt,Lt) (from Bt to Lt)
is defined as

ΨBL(Bt,Lt) =
|st,j ∩Ot(1)|
|st,j |

; j ∈ {1, · · · , J}, (10)

which is the rate that superpixel st,j covered by the selected
object proposal Ot(1).

C. Dynamic Models

Dynamic model of object discovery. The object discovery
labeling L should be temporally consistent throughout V.
Thus, the dynamic model of object discovery is defined as

p(Lt = lt,m|Lt−1) = pom;m ∈ {1, · · · ,K}, (11)

where
pom = δm · (exp(−αm) + exp(−βm)), (12)

is the transition probability between ot,m and its temporally
adjacent object proposal ot−1,i, where i is found by

i = arg max
i′∈{1,··· ,K}

IoU(ot,m,Warp(ot−1,i′)), (13)

where Warp(ot−1,i′) is the warped region from ot−1,i′

in frame ft−1 to its neighboring frame ft by optical
flow [51]. δm = δ(lt−1,i, lt,m) is an indicator variable.
It is 1 when lt−1,i 6= lt,m, i.e., the object discovery la-
bels of ot−1,i and ot,m are inconsistent, and 0 otherwise.
αm = EMD(hc(ot−1,i),hc(ot,m)) is the earth mover’s dis-
tance (EMD) [52] between the color histograms of ot−1,i and
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t

Spatio-temporal object proposal tube

Fig. 6. The temporally adjacent superpixels found under the guidance of the
spatio-temporal object proposal tube by object discovery.

ot,m. βm = χ2
shape(ot−1,i, ot,m) is the χ2-distance between

the HOG descriptors [53] of ot−1,i and ot,m.
Dynamic model of object segmentation. The object segmen-
tation labeling B should also be temporally consistent through-
out V. Thus, the dynamic model of object segmentation is
defined as

p(Bt = bt,n|Bt−1) = pbn;n ∈ {1, · · · , J}, (14)

where
pbn = δn exp(−ωn) + σn exp(µn), (15)

is the transition probability between st,n and its temporally
adjacent superpixel st−1,j . δn = δ(bt−1,j , bt,n) is an indi-
cator variable, defined identical to δm in Eq. (12). ωn =
||hm(st−1,j)− hm(st,n)||2 is the Euclidean distance between
the histograms of oriented optical flow (HOOF) [54] of st−1,j
and st,n. σn is also an indicator variable, which is 1 when
st,n and st−1,j both belong to the spatio-temporal object
proposal tube obtained by object discovery, and 0 otherwise.
µn = IoU(st,n,Warp(st−1,j)) is the IoU score of st,n and
the warped region from st−1,j to its neighboring frame ft.

In this way, pbn will encourage the temporally adjacent
superpixels that both belong to the spatio-temporal object
proposal tube obtained by object discovery to have the same
segmentation labels, as illustrated in Fig. 6. Besides, pbn
will encourage the segmentation labels of temporally adjacent
superpixels that have similar motion to be consistent. This
ensures that we can handle the object with large motion.

D. Unsupervised Initialization

Given V, each frame ft is represented by F(ft) ∈ Rn,
which is obtained by using a pre-trained ResNet-152 [55] on
ImageNet [56] followed by PCA [57] to generate a compact
representation. We then leverage a classifier to obtain a con-
fidence score for each frame to be a noisy frame. To train the
classifier, we build an initial training set, in which the negative
examples are gathered from the Google-30 dataset [58], [59],
and the positive examples are uniformly sampled from V in
some (e.g., 5) frames. We proceed to retrain the classifier by
treating the top ranked frames as positive, and the low ranked

TABLE I
THE STATISTICAL DETAILS OF FIVE BENCHMARK DATASETS OR THEIR

SUBSETS USED FOR EVALUATION OF OUR JOINT VIDEO OBJECT
DISCOVERY AND SEGMENTATION METHOD.

Dataset Group Video Frame Noise
Total Pos. Neg. (%)

SegTrack 8 8 785 785 0 0
YouTube-Objects 8 83 12941 12890 51 0.4
DAVIS 50 50 3455 3455 0 0
XJTU-Stevens 10 101 13398 12907 491 3.7
Noisy-ViDiSeg 11 11 1961 1312 649 33.1

frames as negative. This process will iterate upon convergence.
Specifically, benefitted from the iterative training, the impact
of noisy frames in the positive examples on training accuracy
is very limited.

VI. EXPERIMENTS AND DISCUSSIONS

A. Experimental Setting

Evaluation datasets. We conduct extensive experiments on
five video datasets to evaluate our joint video object discovery
and segmentation method. We first evaluate the object segmen-
tation performance from a single video without noisy frames
on the SegTrack dataset [30], [31], the YouTube-Objects
dataset [32], and the DAVIS dataset [33], where all video
frames contain the objects. We proceed to evaluate the joint
object discovery and segmentation performance from a single
video with noisy frames on the XJTU-Stevens dataset [34],
[35] and a newly introduced Noisy-ViDiSeg dataset in this
paper, both have many frames that do not contain the objects.
Some of the statistics of the above datasets (or their subsets)
used for evaluation are summarized in Table I. They are
• SegTrack dataset [30], [31] is one of the most widely

used video object segmentation dataset. It contains 14
videos of 1, 066 frames with pixel-wise annotations. As
our method focuses on single object segmentation, we
use the 8 videos that contain only one object.

• YouTube-Objects dataset [32], [13], [60] is mainly used
for video object detection evaluation, while its subset
indicated in [60] and the ground truth provided by [13]
are often used for video object segmentation evaluation.
This subset has 126 challenging videos of 10 categories
with 20, 101 frames, where 2, 127 frames are labeled. As
there are videos containing multiple objects, we only use
the 83 videos of 8 categories containing only one object,
with 12, 941 frames in total and 1, 379 labeled frames.

• DAVIS dataset [33] is the latest and most challenging
video object segmentation dataset. It includes 50 high-
quality videos of 3, 455 frames, and has pixel-wise la-
bels for the prominent moving objects. The videos are
unconstrained in nature and exhibit occlusions, motion
blur, and large variation in appearance.

• XJTU-Stevens dataset [34], [35] is a video object co-
segmentation and classification dataset. It contains 10
categories of 101 publicly available web videos for a
total of 13, 398 frames, and 3.7% of them are noisy
frames not containing the objects. The objects in each
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Fig. 7. The numbers of total, positive and negative frames, and the percentage
of noisy frames of each category of the new Noisy-ViCoSeg dataset.

video category exhibit large differences in appearance,
size, shape, viewpoint, and pose.

• Noisy-ViDiSeg dataset is a video object discovery and
segmentation dataset newly introduced in this paper, in
order to accurately evaluate our proposed method and
to build a benchmark for future research. It includes 11
videos of 11 categories with 1, 961 frames in total, and
each video contains a large number of noisy frames. The
percentage of noisy frames is 33.1%. Fig. 7 details the
statistics. As shown in Fig. 8, we manually assign the
noisy frames with frame-level labels indicating if they
contain the object, and the positive frames with both
frame-level labels and pixel-wise segmentation labels.

Evaluation metric. The intersection-over-union score is used
for object segmentation evaluation, and is defined as

IoU =
|Seg ∩GT |
|Seg ∪GT |

, (16)

where Seg is the segmentation result, and GT is the ground
truth segmentation.

The labeling accuracy is employed for object discovery
evaluation, and is defined as

Acc =
TP + TN

Total
, (17)

where TP , TN and Total are the numbers of true positive,
true negative and total frames, respectively.
Baselines. To fully evaluate our proposed method, we compare
our method with six state-of-the-art methods, including four
single video object segmentation methods (VOS [4], FOS [3],
BVS [15], and OSS [16]) and two multi-video object co-
segmentation methods (VOC [40] and VDC [35]). They are
• VOS [4]: an unsupervised single video object segmenta-

tion method which automatically discovers key segments
and groups them to predict the foreground object.

• FOS [3]: an unsupervised single video object segmenta-
tion method which separates the target object via a rapid
estimate of which pixels are inside the object.

• BVS [15]: a semi-supervised single video object segmen-
tation method which separates the target objects based
on operations in the bilateral space. It exploits the object
segmentation mask of the first frame.

• OSS [16]: a semi-supervised single video object segmen-
tation method which separates the object from the back-

Fig. 8. Some example frames and their annotations of the Noisy-ViDiSeg
dataset. The red cross indicates the noisy frame; the green tick indicates the
positive frame containing the object, which is depicted by the red edge.

ground based on a fully-convolutional neural network,
given the mask of the first frame.

• VOC [40]: an unsupervised multi-video object co-
segmentation method which can segment multiple objects
by sampling, tracking and matching object proposals via
a regulated maximum weight clique extraction scheme.

• VDC [35]: a supervised multi-video object discovery and
co-segmentation method which can discover and segment
the common objects from multiple videos with a few
noisy frames, given the frame-level discovery labels of
three video frames.

B. Object Segmentation from a Single Video without Noisy
Frames

We first evaluate the object segmentation performance from
a single video without noisy frames of our method on the
SegTrack dataset [30], [31], YouTube-Objects dataset [32], and
DAVIS dataset [33]. All video frames of these three video
datasets contain the objects.
Evaluation on the SegTrack dataset. As our method focuses
on single object segmentation, we test our method on the
eight videos that contain only one object, and compare with
four single video object segmentation methods (VOS [4],
FOS [3], BVS [15], and OSS [16]). The average IoU scores
and some example results of them are presented in Table II and
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TABLE II
THE AVERAGE IOU SCORES OF OUR METHOD AND FOUR SINGLE VIDEO

OBJECT SEGMENTATION METHODS ON EIGHT VIDEOS THAT CONTAIN
ONLY ONE OBJECT OF THE SEGTRACK DATASET. HIGHER VALUES ARE

BETTER.

Video VOS FOS BVS OSS Ours
[4] [3] [15] [16] Dis. Seg.

birdfall2 49.4 17.5 63.5 38.1 34.1 63.0
bird of paradise 92.4 81.8 91.7 67.4 84.5 94.5
frog 75.7 54.1 76.4 71.0 53.6 82.1
girl 64.2 54.9 79.1 87.9 56.0 85.5
monkey 82.6 65.0 85.9 88.2 69.7 69.0
parachute 94.6 76.3 93.8 79.8 86.3 91.2
soldier 60.8 39.8 56.4 85.8 56.1 80.5
worm 62.2 72.8 65.5 63.1 63.5 78.8
Avg. 72.7 57.8 76.5 72.2 59.2 80.6

VOS FOS BVS OSS Ours
[4] [3] [15] [16] Dis. Seg.

Fig. 9. Some example results of our method and four single video object
segmentation methods on eight videos that contain only one object of the
SegTrack dataset.

Fig. 9, respectively. Besides the qualitative and quantitative
results obtained by object segmentation of our method, we
also present the average IoU scores and some example object
regions obtained by object discovery of our method.

The results show that our method outperforms all other
state-of-the-art methods. But on the videos of monkey and
soldier, our method erroneously segment the shadow of the
monkey in water and the shadow of the soldier as foreground
objects, and thus does not performs well. The above results
clearly demonstrate that our method can handle certain varia-
tions in shape (frog and worm), appearance (bird of paradise),
and illumination (parachute), but has encountered difficulties
when there are large shadows that have similar motion or color
with the objects (monkey and soldier).
Evaluation on the YouTube-Objects dataset. Similarly, we
evaluate our method and compare with three single video ob-
ject segmentation methods (FOS [3], BVS [15], and OSS [16])
on the 83 videos that contain only one object. We present the
average IoU scores of them in Table III, and some example
results of them in Fig. 10. For fair comparison, we computed

TABLE III
THE AVERAGE IOU SCORES OF OUR METHOD AND THREE SINGLE VIDEO

OBJECT SEGMENTATION METHODS ON THE VIDEOS CONTAINING ONLY
ONE OBJECT OF THE YOUTUBE-OBJECTS DATASET. HIGHER VALUES ARE

BETTER.

Video FOS BVS OSS Ours
[3] [15] [16] Dis. Seg.

aeroplane 83.9 90.8 84.4 73.9 88.1
bird 80.9 89.5 85.6 76.1 88.1
boat 35.1 72.7 75.1 58.0 71.8
car 69.1 64.5 69.3 53.0 68.8
cat 57.8 62.7 73.8 41.2 65.9
dog 54.8 78.2 87.7 46.8 72.4
motorbike 21.8 55.8 68.0 33.9 55.3
train 21.8 53.5 54.4 54.9 71.9
Avg. 53.1 71.0 74.8 54.7 72.8

FOS BVS OSS Ours
[3] [15] [16] Dis. Seg.

Fig. 10. Some example results of our methods and three single video
object segmentation methods on the videos containing only one object of
the YouTube-Objects dataset.

the IoU scores of BVS [15] and OSS [16] using the final
segmentation masks provided by them, respectively.

The results show that our method outperforms FOS [3]
and BVS [15], but performs poorer than OSS [16]. This is
because the semi-supervise method OSS [16] can leverage the
segmentation mask of the first frame to separate the object
from its ambiguous surrounding, while our method segments
the object and its connective surrounding with similar motion
as a whole. As illustrated by the videos of motorbike and
boat in Fig. 11, the persons on the motorbike and boat are
all labeled as background in the ground truth, although they
move together with the motorbike and boat.
Evaluation on the DAVIS dataset. We test our method and
compare with four single video object segmentation methods
(VOS [4], FOS [3], BVS [15], and OSS [16]) on all 50
videos of the DAVIS dataset. The average IoU scores and
some qualitative results of them are presented in Table IV
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Fig. 11. Some examples of the ground truth segmentations provided by [13]
of the YouTube-Objects dataset.

VOS FOS BVS OSS Ours
[4] [3] [15] [16] Dis. Seg.

Fig. 12. Some visual example results of our methods and four single video
object segmentation methods on the DAVIS dataset.

and Fig. 12, respectively.
The results reveal that our method largely outperforms

VOS [4], FOS [3], and BVS [15] by a margin from 7.9% to
17.5%, although BVS [15] exploits the segmentation mask of
the first frame to facilitate the segmentation procedure. There
is a margin of 5.4% between our method and OSS [16]. This
is mainly because the semi-supervised method OSS [16] uses
not only the segmentation mask of the first frame of each
video, but also a large video set (30 of 50 videos) of the
DAVIS dataset for training to obtain their final results on the
remaining 20 videos, while our method is unsupervised.

C. Joint Object Discovery and Segmentation from a Single
Video with Noisy Frames

We further evaluate the joint object discovery and segmen-
tation performance from a single video with noisy frames of
our method on the XJTU-Stevens dataset [34], [35] and Noisy-
ViDiSeg dataset, both of them have many noisy frames that
do not contain the objects.
Evaluation on the XJTU-Stevens dataset. The XJTU-
Stevens dataset is a video object co-segmentation and classifi-
cation dataset, in which 3.7% of the frames are noisy frames.
Besides the four single video segmentation methods (VOS [4],
FOS [3], BVS [15], and OSS [16]), we also compare our
method with two multi-video object co-segmentation methods
(VOC [40] and VDC [35]). We implement two versions of

TABLE IV
THE AVERAGE IOU SCORES OF OUR METHOD AND FOUR SINGLE VIDEO

OBJECT SEGMENTATION METHODS ON THE DAVIS DATASET. THE 30
VIDEOS USED BY OSS FOR TRAINING ARE ANNOTATED BY “-”. HIGHER

VALUES ARE BETTER.

Video VOS FOS BVS OSS Ours
[4] [3] [15] [16] Dis. Seg.

bear 89.1 89.8 95.5 - 85.0 91.3
Blackswan 84.2 73.2 94.3 94.2 83.4 91.5
Bmx-Bumps 30.9 24.1 43.4 - 10.6 45.2
Bmx-Trees 19.3 18.0 38.2 55.5 33.5 41.1
Boat 6.5 36.1 64.4 - 56.5 63.1
Breakdance 54.9 46.7 50.0 70.8 42.5 52.9
Breakdance-Flare 55.9 61.6 72.7 - 45.8 60.2
Bus 78.5 82.5 86.3 - 74.1 87.0
Camel 57.9 56.2 66.9 85.1 64.7 82.7
Car-Roundabout 64.0 80.8 85.1 95.3 68.3 75.2
Car-Shadow 58.9 69.8 57.8 93.7 59.3 75.9
Car-Turn 80.6 85.1 84.4 - 75.0 85.9
Cows 33.7 79.1 89.5 94.6 65.6 88.7
Dance-Jump 74.8 59.8 74.5 - 38.9 64.2
Dance-Twirl 38.0 45.3 49.2 67.0 44.9 60.6
Dog 69.2 70.8 72.3 90.7 66.3 86.4
Dog-Agility 13.2 28.0 34.5 - 45.2 68.4
Drift-Chicane 18.8 66.7 3.3 83.5 6.2 71.5
Drift-Straight 19.4 68.3 40.2 67.6 56.4 66.6
Drift-Turn 25.5 53.3 29.9 - 50.2 58.1
Elephant 67.5 82.4 85.0 - 55.9 89.2
Flamingo 69.2 81.7 88.1 - 55.9 81.3
Goat 70.5 55.4 66.1 88.0 62.2 79.4
Hike 89.5 88.9 75.5 - 75.5 89.8
Hockey 51.5 46.7 82.9 - 50.5 64.8
Horsejump-High 37.0 57.8 80.1 78.0 63.8 80.9
Horsejump-Low 63.0 52.6 60.1 - 49.9 75.8
Kite-Surf 58.5 27.2 42.5 68.6 48.9 68.7
Kite-Walk 19.7 64.9 87.0 - 67.0 71.6
Libby 61.1 50.7 77.6 80.8 34.2 79.9
Lucia 84.7 64.4 90.1 - 68.9 85.4
Mallard-Fly 58.5 60.1 60.6 - 38.8 42.9
Mallard-Water 78.5 8.7 90.7 - 38.3 74.6
Motocross-Bumps 68.9 61.7 40.1 - 58.6 83.3
Motocross-Jump 28.8 60.2 34.1 81.6 44.6 68.6
Motorbike 57.2 55.9 56.3 - 53.6 66.1
Paragliding 86.1 72.5 87.5 - 74.8 90.2
Paragliding-Launch 55.9 50.6 64.0 62.5 56.7 60.0
Parkour 41.0 45.8 75.6 85.5 64.4 77.9
Rhino 67.5 77.6 78.2 - 73.6 83.8
Rollerblade 51.0 31.8 58.8 - 39.9 77.0
Scooter-Black 50.2 52.2 33.7 71.1 47.1 44.5
Scooter-Gray 36.3 32.5 50.8 - 47.0 66.1
Soapbox 75.7 41.0 78.9 81.2 58.6 79.4
Soccerball 87.9 84.3 84.4 - 76.8 88.5
Stroller 75.9 58.0 76.7 - 52.3 87.8
Surf 89.3 47.5 49.2 - 70.4 92.5
Swing 71.0 43.1 78.4 - 59.9 83.8
Tennis 76.2 38.8 73.7 - 36.8 78.6
Train 45.0 83.1 87.2 - 46.0 91.4
Avg. 56.9 57.5 66.5 79.8 54.9 74.4

VDC [35], one is its original version operating on multiple
videos, and the other one is operating on one single video
instead of multiple videos, which becomes a single video
object discovery and segmentation method VDS [35].

We present the average IoU scores of object segmentation
in Table V, the labeling accuracies of object discovery in
Table VI, and some qualitative results in Fig. 13. As they show,
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TABLE V
THE AVERAGE IOU SCORES OF OUR METHOD, FOUR SINGLE VIDEO

OBJECT SEGMENTATION METHODS, AND TWO MULTI-VIDEO OBJECT
CO-SEGMENTATION METHODS ON THE XJTU-STEVENS DATASET. HIGHER

VALUES ARE BETTER.

Video VOS FOS BVS OSS VOC VDC VDS Ours
[4] [3] [15] [16] [40] [35] [35] Dis. Seg.

airplane 19.7 69.9 35.1 80.3 61.2 86.4 75.2 54.6 78.4
balloon 77.4 60.3 90.8 86.5 87.4 94.6 86.5 81.7 94.0
bear 88.3 80.7 82.0 92.8 85.9 90.5 86.1 79.5 89.7
cat 30.3 66.8 42.2 74.0 80.7 92.1 79.7 66.4 75.7
eagle 37.3 69.2 37.7 65.6 79.5 89.5 80.9 48.2 74.2
ferrari 36.0 70.7 50.5 84.0 62.1 87.7 75.4 71.7 86.7
figure skating 62.4 25.5 48.7 58.4 65.8 88.5 74.6 45.3 72.5
horse 75.7 72.3 76.8 91.9 86.2 92.0 85.8 68.6 86.3
parachute 52.3 48.3 72.9 73.1 84.7 94.0 83.9 58.5 88.0
single diving 59.7 49.2 30.7 70.3 72.0 87.7 76.8 54.2 73.1
Avg. 53.9 61.3 54.3 77.7 76.6 90.3 80.5 62.9 81.9

TABLE VI
THE LABELING ACCURACIES OF OBJECT DISCOVERY OF OUR METHOD,

FOUR SINGLE VIDEO OBJECT SEGMENTATION METHODS, AND TWO
MULTI-VIDEO OBJECT CO-SEGMENTATION METHODS ON THE

XJTU-STEVENS DATASET. HIGHER VALUES ARE BETTER.

Video APR VOS FOS BVS OSS VOC VDC VDS Ours[4] [3] [15] [16] [40] [35] [35]
airplane 96.5 95.1 98.1 96.5 98.4 96.5 100.0 96.5 99.4
balloon 95.5 95.5 96.0 94.9 96.1 95.5 99.8 95.5 98.2
bear 95.8 96.3 97.7 96.6 97.6 95.8 99.8 95.8 99.9
cat 97.6 97.8 87.8 97.6 97.6 97.6 99.2 97.6 97.3
eagle 97.8 97.8 95.4 96.7 98.4 97.8 99.5 97.8 97.2
ferrari 97.8 97.8 99.0 97.8 98.9 97.8 99.5 97.8 99.4
figure skating 95.1 96.2 93.3 95.1 95.1 95.1 100.0 95.1 100.0
horse 95.4 95.8 97.3 95.4 97.2 95.4 99.9 95.4 100.0
parachute 97.3 97.5 95.8 97.3 96.7 97.3 99.9 97.3 96.6
single diving 94.8 94.1 92.5 88.9 97.1 94.8 99.6 94.8 97.9
Avg. 96.3 96.3 95.8 95.6 97.4 96.3 99.7 96.3 98.6

our method outperforms all other methods in terms of both
IoU scores for object segmentation and labeling accuracies
for object discovery, except VDC [35].

In terms of object segmentation, our method is greatly
superior in IoU score to not only four single video object
segmentation methods (VOS [4], FOS [3], BVS [15], and
OSS [16]) by a margin from 4.2% to 28%, but also the multi-
video object co-segmentation method VOC [40] by a margin
of 5.3%.

Although our method is inferior to the multi-video object
discovery and co-segmentation method VDC [35], our method
is better than its variant VDS [35], i.e., a single video object
discovery and segmentation method. The reasons are two-fold,
one is that VDC [35] can leverage the contextual information
of the common objects from multiple videos to facilitate both
the object discovery and object segmentation of each single
video, and the other one is that VDC [35] is bootstrapped
with the frame-level object discovery labels for three frames
of each video.

In terms of object discovery, our method achieves a higher
labeling accuracy than VOS [4], FOS [3], BVS [15], OSS [16],
VOC [40], and VDS [35], but is slightly lower than VDC [35].
The reasons are three-fold, the first one is that VOS [4],
FOS [3], BVS [15], VOC [40], and VDS [35] almost all cannot

VOS FOS BVS OSS VOC VDC VDS Ours
[4] [3] [15] [16] [40] [35] [35] Dis. Seg.

Fig. 13. Some qualitative results of our method, four single video object
segmentation methods, and two multi-video object co-segmentation methods
on the XJTU-Stevens dataset.

distinguish the positive frames that contain the object from the
noisy frames, thus their labeling accuracies of object discovery
are equal to or lower than the actual positive rate (APR) of
the frames of each video category.

The second one is that only 3.7% of the frames are noisy
frames in the video dataset, and most of the noisy frames come
from the different video shot with the positive frames, thus
it is easy to identify the noisy frames. The last but the most
important one is that our method and VDC [35] indeed are able
to identify the object from the noisy video, where VDC [35]
needs to be bootstrapped by three frame-level discovery labels,
while our method does not need any supervision.
Evaluation on the Noisy-ViDiSeg dataset. The Noisy-
ViDiSeg dataset is a newly introduced object discovery and
segmentation dataset in this paper, in which 33.1% of the
frames are noisy frames. We test our method and compare
with four single video object segmentation methods (VOS [4],
FOS [3], BVS [15], and OSS [16]) and two multi-video
object co-segmentation methods (VOC [40] and VDC [35]).
Because there is only one video in each video category,
VOC [40] becomes a single video object segmentation method,
and VDC [35] becomes a single video object discovery and
segmentation method, i.e., VDS [35].

The average IoU scores of object segmentation, the labeling
accuracies of object discovery, and some qualitative results are
presented in Table VII, Table VIII and Fig. 14, respectively.
They show that, our method outperforms all other methods in
terms of both object segmentation and object discovery. This
strongly validates the efficacy of our joint object discovery and
segmentation method.

For object segmentation, our method improves the state-
of-the-art methods by a margin from 4.2% to 53.4%. This
is mainly because all the other methods encounter difficulties
when the object in each video may disappear at any time and
exhibits complex temporary occlusions and dramatic changes
in appearance, size, and shape, while our method can better
handle these cases.

For object discovery, our method outperforms the state-of-
the-art methods by a significant margin from 8.4% to 32.3%.
The reason is that our method is able to distinguish the video
frames that contain the object from the noisy frames in a single
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TABLE VII
THE AVERAGE IOU SCORES OF OUR METHOD, FOUR SINGLE VIDEO

OBJECT SEGMENTATION METHODS, AND TWO MULTI-VIDEO OBJECT
CO-SEGMENTATION METHODS ON THE NOISY-VIDISEG DATASET. HIGHER

VALUES ARE BETTER.

Video VOS FOS BVS OSS VOC VDC Ours
[4] [3] [15] [16] [40] [35] Dis. Seg.

F1 77.2 8.6 26.9 77.3 8.9 78.2 68.2 81.9
airplane 30.0 48.8 34.6 34.6 8.3 57.6 43.7 65.8
gymnastics 14.2 55.6 16.6 61.9 10.6 70.8 68.7 76.9
lion 27.3 62.6 51.1 79.0 27.4 71.4 61.0 76.1
ostrich 57.4 57.4 2.5 70.7 1.1 61.3 60.2 63.0
panda 29.1 33.6 75.3 82.1 62.7 79.5 57.2 85.7
parkour 66.9 69.4 54.7 82.7 56.8 80.6 59.5 85.1
rock 6.9 44.4 18.0 79.0 3.2 70.8 55.4 73.0
skiing 66.3 62.6 2.8 65.2 46.6 67.9 79.0 85.0
surfing 56.3 55.2 35.2 57.7 1.6 57.2 45.3 61.0
tiger 63.2 54.1 58.2 94.8 16.7 76.7 51.2 77.7
Avg. 45.0 50.2 34.2 71.4 22.2 70.2 59.0 75.6

TABLE VIII
THE LABELING ACCURACIES OF OBJECT DISCOVERY OF OUR METHOD,

FOUR SINGLE VIDEO OBJECT SEGMENTATION METHODS, AND TWO
MULTI-VIDEO OBJECT CO-SEGMENTATION METHODS ON THE

NOISY-VIDISEG DATASET. HIGHER VALUES ARE BETTER.

Video APR VOS FOS BVS OSS VOC VDC Ours[4] [3] [15] [40] [16] [35]
F1 56.3 95.2 56.3 69.0 99.2 56.3 94.2 100.0
airplane 62.6 62.9 61.4 62.7 71.7 62.7 81.9 95.6
gymnastics 61.1 69.9 98.2 61.1 61.1 61.1 87.4 99.1
lion 71.6 86.4 97.7 71.6 98.9 71.6 92.5 96.6
ostrich 68.4 81.8 93.1 65.6 91.1 68.4 89.1 91.5
panda 84.5 84.5 84.5 84.5 90.8 84.5 89.8 99.4
parkour 76.7 76.7 76.7 76.7 76.7 76.7 77.5 93.0
rock 42.1 42.1 100.0 42.1 96.2 42.1 97.1 99.2
skiing 81.3 90.6 95.9 36.8 97.1 81.3 83.6 93.0
surfing 66.5 82.5 81.6 66.5 99.1 66.5 87.1 91.0
tiger 71.8 71.8 71.8 71.8 100.0 71.8 74.3 100.0
Avg. 66.9 74.9 79.9 63.5 87.4 66.9 86.8 95.8

VOS FOS BVS OSS VOC VDC Ours
[4] [3] [15] [16] [40] [35] Dis. Seg.

Fig. 14. Some visual example results of our method, four single video object
segmentation methods, and two multi-video object co-segmentation methods
on the Noisy-ViDiSeg dataset.

TABLE IX
THE AVERAGE IOU SCORES OF DIFFERENT CHOICES ON SUPERPIXEL AND

OBJECT PROPOSAL ALGORITHMS ON THE NOISY-VIDISEG DATASET.
HIGHER VALUES ARE BETTER.

Video COP [36] GOP [27]
GS[61]SLIC[42] ES[62] GS[61]SLIC[42] ES[62]

F1 80.9 82.3 82.2 80.7 81.9 82.2
airplane 62.4 62.7 62.5 65.4 65.8 65.3
gymnastics 62.1 64.5 65.4 75.5 76.9 80.1
lion 78.6 78.2 79.0 76.1 76.1 76.2
ostrich 65.1 64.4 65.4 65.2 63.0 65.4
panda 83.6 84.5 84.1 85.5 85.7 86.0
parkour 83.2 84.4 85.9 82.9 85.1 85.7
rock 74.1 76.0 77.3 71.1 73.0 75.4
skiing 82.8 83.6 85.2 83.7 85.0 85.4
surfing 65.0 64.5 74.0 64.6 61.0 62.6
tiger 74.2 74.5 71.2 77.2 77.7 75.6
Avg. 73.8 74.5 75.7 75.3 75.6 76.4

video, while all the other methods do not have the ability or
the ability is too weak, when there are a large number of noisy
frames in a single video.

Please note that, we also present the average IoU scores
and some examples of the object regions selected by object
discovery of our method on the above five datasets. They show
that the object regions selected by object discovery almost
always focus on the object, and the majority of them belong
to the type of “object region” as defined in Section V-C, this
is due to the collaboration of object discovery and object
segmentation of our method. Moreover, although the average
IoU scores of the object regions selected by object discovery
of our method are not high, compared to the average IoU
scores obtained by object segmentation of our method and
other state-of-the-art methods, they indeed facilitate the object
segmentation procedure of our method.

Impact of superpixel and object proposal algorithms. To
quantify the impact of the different superpixel algorithms,
we compare the performance of our method with SLIC [42],
GS [61] and ES [62]. To quantify the impact of different
object proposal algorithms, we compare the performance of
our method with GOP [27] and COP [36]. With these different
variants of our methods, the average IoU scores on the Noisy-
ViDiSeg dataset are summarized in Table IX and some qualita-
tive examples are illustrated in Fig 15. As shown in Table IX,
the performance differences are within 2.6%, demonstrating
that our method is robust to these variations and not tied to
specific superpixel or object proposal algorithms.

To summarize, the results on the above five datasets clearly
reveal that, although our method produces inferior results on
video datasets without noisy frames, we are able to obtain
better results on video datasets with noisy frames, when
compared with state-of-the-art. Moreover, as there are more
noisy frames in the video dataset, the performance of our
method becomes better, while other methods perform poorer.
This strongly demonstrates that our method is capable of
jointly discovering and segmenting the object from a single
noisy video, where object discovery and object segmentation
work in a collaborative way.
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COP+GS COP+SLIC COP+ES GOP+GS GOP+SLIC GOP+ES

Fig. 15. Some visual examples of different choices on superpixel and object
proposal algorithms on the Noisy-ViDiSeg dataset.

VII. CONCLUSION

We presented a method to jointly discover and segment an
object from a single video, in which there are a large number
of irrelevant frames devoid of the target object. Our method
overcomes a limitation that previous methods either only fulfill
video object discovery or video object segmentation requiring
all video frames contain the object. We proposed a principle
probabilistic model, in which video object discovery and video
object segmentation are cast into two coupled dynamic Markov
networks. The bi-directional message passing revealed the
collaboration between the two tasks. Experiments on five video
datasets validated the efficacy of our proposed method.

APPENDIX I

The exact inference of the marginal posterior probabilities
p(L|O,S) and p(B|O,S) can be calculated by belief propa-
gation algorithm through a local message passing process. The
local messages passing from B to L and from L to B are

mBL(L)←
∫
B

p(S|B)Ψ(L,B)dB, (18)

mLB(B)←
∫
L

p(O|L)Ψ(L,B)dL. (19)

By iterating the message passing until convergence, the
marginal posterior probabilities of L and B are obtained as

p(L|O,S) ∝ p(O|L)mBL(L), (20)
p(B|O,S) ∝ p(S|B)mLB(B). (21)

APPENDIX II

The belief propagation algorithm is extended to in-
fer the marginal posterior probabilities p(Lt|Ot,St) and
p(Bt|Ot,St) on the two coupled dynamic Markov networks.
The dynamic models in object discovery and object segmen-
tation are assumed to be independent

p(Lt,Bt|Lt−1,Bt−1) = p(Lt|Lt−1)p(Bt|Bt−1). (22)

Given the inference results both at previous time t − 1
(p(Lt−1|O−→t−1, S−→t−1) and p(Bt−1|O−→t−1, S−→t−1)) and next
time t+1 (p(Lt+1|O←−t+1, S←−t+1), and p(Bt+1|O←−t+1, S←−t+1)),
the messages updating at time t from B to L and from L to
B are executed in a bi-directional way as

mBL(Lt)←
∫
Bt

[
p(St|Bt)ΨBL(Bt,Lt) (23)

×
∫
Bt−1

p(Bt|Bt−1)p(Bt−1|O−→t−1, S−→t−1)dBt−1

×
∫
Bt+1

p(Bt|Bt+1)p(Bt+1|O←−t+1, S←−t+1)dBt+1

]
dBt,

mLB(Bt)←
∫
Lt

[
p(Ot|Lt)ΨLB(Lt,Bt) (24)

×
∫
Lt−1

p(Lt|Lt−1)p(Lt−1|O−→t−1, S−→t−1)dLt−1

×
∫
Lt+1

p(Lt|Lt+1)p(Lt+1|O←−t+1, S←−t+1)dLt+1

]
dLt.

The marginal posterior probabilities of L and B at time t
are computed by combing the incoming messages from both
its forward and backward neighborhood as

p(Lt|O,S) = p(Ot|Lt)mBL(Lt) (25)

×
∫
Lt−1

p(Lt|Lt−1)p(Lt−1|O−→t−1, S−→t−1)dLt−1

×
∫
Lt+1

p(Lt|Lt+1)p(Lt+1|O←−t+1, S←−t+1)dLt+1,

p(Bt|O,S) = p(St|Bt)mLB(Bt) (26)

×
∫
Bt−1

p(Bt|Bt−1)p(Bt−1|O−→t−1, S−→t−1)dBt−1

×
∫
Bt+1

p(Bt|Bt+1)p(Bt+1|O←−t+1, S←−t+1)dBt+1.
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