Joint Video Object Discovery and Segmentation by Coupled Dynamic Markov Networks

Ziyi Liu, Student Member, IEEE Le Wang, Member, IEEE Gang Hua, Senior Member, IEEE Qilin Zhang, Member, IEEE Zhenxing Niu, Member, IEEE Ying Wu, Fellow, IEEE and Nanning Zheng, Fellow, IEEE

Abstract—It is a challenging task to extract segmentation mask of a target from a single noisy video, which involves object discovery coupled with segmentation. To solve this challenge, we present a method to jointly discover and segment an object from a noisy video, where the target disappears intermittently throughout the video. Previous methods either only fulfill video object discovery, or video object segmentation presuming the existence of the object in each frame. We argue that jointly conducting the two tasks in a unified way will be beneficial. In other words, video object discovery and video object segmentation tasks can facilitate each other. To validate this hypothesis, we propose a principled probabilistic model, where two dynamic Markov networks are coupled – one for discovery and the other for segmentation. When conducting the Bayesian inference on this model using belief propagation, the bi-directional message passing reveals a clear collaboration between these two inference tasks. We validated our proposed method in five datasets. The first three video datasets, i.e., the SegTrack dataset, the YouTube-Objects dataset, and the Davis dataset, are not noisy, where all video frames contain the objects. The two noisy datasets, i.e., the XJTU-Stevens dataset, and the Noisy-ViDiSeg dataset, newly introduced in this paper, both have many frames that do not contain the objects. When compared with state-of-the-art, it is shown that although our method produces inferior results on video datasets without noisy frames, we are able to obtain better results on video datasets with noisy frames.

Index Terms—Object segmentation, Object discovery, Dynamic Markov Networks, Probabilistic graphical model.

I. INTRODUCTION

The problem of separating out a foreground object from the background across all frames of a video is known as video object segmentation. The goal is to label each pixel in all video frames according to whether it belongs to the unknown target object or not. The resulting segmentation is a spatio-temporal object tube delineating the boundaries of the object throughout a video. Such capacity can be useful for a variety of computer vision tasks, such as object-centric video summarization, action analysis, video surveillance, and content-based video retrieval.

Video object segmentation has received great progress in recent years, mainly including fully automatic methods [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], semi-supervised methods [11], [12], [13], [14], [15], [16], and interactive methods [17], [18], [19], [20], [21]. Nevertheless, there are still three issues need to be further addressed.

Firstly, an unrealistically optimistic assumption is often
made in these methods, that the target object is present in all (or most) video frames. Therefore, methods robust to a large number of “noisy” frames (i.e., irrelevant frames devoid of the target object) are urgently needed.

Moreover, most of them emphasized on leveraging the low-level features (i.e., color and motion) or contextual information shared among individual or consecutive frames to find the common regions, and simply employed the short-term motion (e.g., optical flow) between consecutive frames to smooth the spatio-temporal segmentation. Therefore, they often encountered difficulties when the objects exhibit large variations in appearance, motion, size, pose, and viewpoint.

Furthermore, several methods [4], [22], [23], [24], [25], [26] employed the mid-level representation of objects (i.e., object proposals [27]) as an additional cue to facilitate the segmentation of the object, with object discovery and object segmentation conveniently isolated as two independent tasks and performed in a two-step manner [28], [29]. Unfortunately, the disregard of their dependencies often leads to suboptimal performances, e.g., object segmentation dramatically failing at focusing on the target, object discovery providing wildly inaccurate object proposals.

To address the above three issues, we present a method to jointly discover and segment an object from a single video with many noisy frames, benefiting from the collaboration of object discovery and object segmentation. Fig. 1 illustrates the proposed framework. We propose a principled probabilistic model, where one dynamic Markov Network for video object discovery and one dynamic Markov Network for video object segmentation are coupled. When conducting the Bayesian inference on this model using belief propagation, the bi-directional propagation of the beliefs of the object’s posteriors on an object proposal graph and a superpixel graph reveals a clear collaboration between these two inference tasks. More specifically, object discovery is conducted through the object proposal graph representing the correlations of object proposals among multiple frames, which is built under the help of the spatio-temporal object segmentation tube obtained by object segmentation on the superpixel graph. Object segmentation is achieved on the superpixel graph representing the connections of superpixels, which is benefited from the spatio-temporal object proposal tube generated by object discovery through the object proposal graph.

We validated our proposed method in five video datasets, including 1) object segmentation from a single video without noisy frames on three video datasets where all video frames contain the objects, i.e., the SegTrack dataset [30], [31], the YouTube-Objects dataset [32], and the Davis dataset [33], and 2) joint object discovery and segmentation from a single video with noisy frames on two video datasets where the videos in both datasets have many frames not containing the objects, i.e., the XJTU-Stevens dataset [34], [35], and the Noisy-ViDiSeg dataset, newly introduced in this paper. When compared with state-of-the-art, it is shown that although our method produces inferior results on video datasets without noisy frames, we are able to obtain better results on video datasets with noisy frames. Indeed, the more noisy frames the videos contain, the better our method performs when compared with competing methods.

The key contributions of this paper are:

- We present an unsupervised method to jointly discover and segment an object from a single noisy video, where the target object disappears intermittently throughout the video.
- We propose a principled probabilistic model, where two dynamic Markov networks are coupled – one for discovery and the other for segmentation.
- To accurately evaluate our proposed method, we establish a noisy video object discovery and segmentation dataset, named Noisy-ViDiSeg dataset, in which the overall percentage of noisy frames is up to 33.1%.

The paper is organized as follows. Section II discusses the related work. Then, we present the principled probabilistic model for joint object discovery and segmentation in Section III, the inference algorithm in Section IV, and the implementation details in Section V. Experimental results are provided in Section VI. Finally, we conclude the paper in Section VII.

II. RELATED WORK

We review related work in video object segmentation, mainly including unsupervised and supervised methods. Since our proposed method leverages the object proposals, we also review the object proposal based video object segmentation methods. Moreover, as some video object co-segmentation methods can separate a common object from multiple noisy videos, we briefly introduce them.

A. Unsupervised Video Object Segmentation

Unsupervised video object segmentation methods aim at automatically extracting an object from a single video. These methods exploited features such as clustering of point trajectories [1], [2], motion characteristics [3], appearance [4], [5], or saliency [3], [6], [7] to achieve object segmentation. Recently, Jang et al. [8] separated a primary object from its background in a video based on an alternating convex optimization scheme. Jain et al. [9] proposed an end-to-end learning framework to combine motion and appearance information to produce a pixel-wise binary segmentation for each frame. Luo et al. [10] proposed a complexity awareness framework which exploits local clips and their relationships.

B. Supervised Video Object Segmentation

Supervised video object segmentation methods require user annotations about a primary object, and can be roughly categorized into label propagation based methods and interactive segmentation methods.

In label propagation based segmentation, an object is manually delineated in one or more frames, and then propagated to the remaining ones [11], [13], [14], [15], [16]. Badrinarayanan et al. [11] proposed a probabilistic graphical model for label propagation. Xiang et al. [12] proposed an online web-data-driven framework for moving object segmentation with online prior learning and 3D Graph cuts. Jain and Grauman [13]
proposed a foreground propagation method using higher order supervoxel potentials. Tsai et al. [14] considered video object segmentation and optical flow estimation simultaneously, where the combination improved both. Marki et al. [15] utilized the segmentation mask of the first frame to construct appearance models for the objects, and then inferred the segmentation by optimizing an energy on a regularly sampled bilateral grid. Caelles et al. [16] adopted Fully Convolutional Networks (FCNs) to tackle video object segmentation, given the mask of the first frame.

In interactive segmentation, user annotations on a few frames are iteratively added during the object segmentation procedure [17], [18], [19], [20], [21]. Although they can guarantee a high quality segmentation, the needs of tedious human efforts render them unable to handle a large number of videos. Thus, they are only suitable for specific applications, such as video editing and post-processing.

C. Object Proposal Based Video Object Segmentation

A large number of methods [4], [22], [23], [24], [25], [26] leveraged the notion of “what is an object” (i.e., object proposals [36], [27]) to facilitate video object segmentation. Lee et al. [4] automatically discovered key segments and grouped them to predict the foreground object in a video. Ma and Latecky [22] cast video object segmentation as finding a maximum weighted clique in a locally connected region graph with mutex constraints.

Zhang et al. [23] segmented the primary video object through a layered directed acyclic graph, which combined unary edges measuring the objectness of the object proposal and pairwise edges modeling the affinities between them. Fragiadaki et al. [24] segmented the moving objects by ranking spatio-temporal segment proposals according to a moving objectness. Perazzi et al. [25] employed a fully connected spatio-temporal graph built over object proposals for video segmentation. Koh and Kim [26] identified the primary object region from the object proposals per frame by an augmentation and reduction process, and then achieved object segmentation.

D. Video Object Co-segmentation

There are several methods focusing on video object co-segmentation from multiple videos [37], [38], [39], [40], [34], [35], [41], where the numbers of both the object classes and object instances are unknown in each frame and each video. Chiu and Fritz [37] proposed a non-parametric algorithm to cluster pixels into different regions. Fu et al. [38] presented a selection graph to formulate correspondences between different videos. Lou and Gevers [39] employed the appearance, saliency and motion consistency of object proposals together to extract the primary objects.

Zhang et al. [40] proposed an object co-segmentation method by selecting spatially salient and temporally consistent object proposal tracklets. Wang et al. [34], [35] proposed a spatio-temporal energy minimization formulation for video object discovery and co-segmentation from multiple videos, but the method needed to be bootstrapped with a few frame-level labels. However, they almost always encountered difficulties when the videos have a large number of noisy frames.

The differences between our method and the above methods are two-fold. One is that we address the problem of simultaneously discovering and segmenting the object of interest from a single video with a large number of noisy frames. The other one is that we cast the two tasks of video object discovery and video object segmentation into a principled probabilistic model by coupling two dynamic Markov networks, in which object discovery and object segmentation can benefit each other.

The proposed method is the first one that can jointly discover and segment the object from a single noisy video with a principled probabilistic model.

III. Model

Given a video \(V = \{f_t\}_{t=1}^T \) with a significant number of noisy frames, our goal is to jointly find an object discovery labeling \(L \) and an object segmentation labeling \(B \) from \(V \). \(L = \{L_t\}_{t=1}^T \) is a spatio-temporal region (object) proposal tube of \(V \). \(L_t = \{l_{t,i}\}_{i=1}^K \) is the object discovery label of each frame \(f_t \), where \(l_{t,i} \in \{0,1\} \) and \(\sum_{i=1}^K l_{t,i} \leq 1 \), i.e., no more than one region proposal among all the \(K \) proposals in \(f_t \) will be identified as the object. \(B = \{B_t\}_{t=1}^T \) is a spatio-temporal object segmentation tube of \(V \). \(B_t = \{b_{t,j}\}_{j=1}^J \) is the object segmentation label of \(f_t \), where \(b_{t,j} \in \{0,1\} \) denotes that each of the \(J \) superpixels either belongs to the object (\(b_{t,j} = 1 \)) or the background (\(b_{t,j} = 0 \)).

The image observations associated with \(L, L_t, B, \) and \(B_t \) are denoted by \(O = \{O_t\}_{t=1}^T, O_t = \{o_{t,i}\}_{i=1}^K \), \(S = \{S_t\}_{t=1}^T \) and \(S_t = \{s_{t,j}\}_{j=1}^J \), respectively. \(o_{t,i} \) and \(s_{t,j} \) are the representations of a region proposal (e.g., generated by [27]) and a superpixel (e.g., computed by SLIC [42]), respectively.

Specifically, the beneficial information are encouraged to be propagated between the joint inference of \(L \) and \(B \), and hence video object discovery and video object segmentation can naturally benefit each other. As illustrated in Fig. 2 (a), we employ a Markov network [43], [44], [45] to characterize the joint object discovery and segmentation from \(V \). The undirected link represents the mutual influence of object discovery and object segmentation, and is associated with a potential compatibility function \(\Psi(L, B) \). The directed links represent the image observation processes, and are associated with two image likelihood functions \(p(O|L) \) and \(p(S|B) \). According to the Bayesian rule, it is easy to obtain

\[
p(L, B|O, S) = \frac{1}{Z_Q} \Psi(L, B) p(O|L) p(S|B),
\]

where \(Z_Q \) is a normalization constant. The above Markov network is a generative model at one time instant.

When putting the above Markov network into temporal context by accommodating dynamic models, we construct two coupled dynamic Markov networks as shown in Fig. 2 (b). The subscript \(t \) represents the time index. In addition, we denote the collective image observations associated with the object discovery labels from the beginning to \(t \) by \(O_t = \{O_1, \ldots, O_t\} \), and conversely from the end to \(t \) by \(O_{T-t} = \{O_{T}, \ldots, O_t\} \). The collective image observations associated with the object segmentation labels are built in the same way, i.e., \(S_t = \)
As is the case in Fig. 2 (a), Bayesian inference is performed on the two coupled dynamic Markov networks in Fig. 2 (b), as detailed in Appendix II. They are calculated by iterating the message passing until convergence as

\[
p(L_t | O, S) = p(O_t | L_t) m_{BL}(L_t), \quad (2)
\]

\[
p(B_t | O, S) = p(S_t | B_t) m_{LB}(B_t), \quad (3)
\]

where \(m_{BL}(L) \) and \(m_{LB}(B) \) are the local messages passing from \(B \) to \(L \) and from \(L \) to \(B \), respectively.

Then, we generalize to infer the marginal posterior probabilities \(p(L_t | O, S) \) and \(p(B_t | O, S) \) on the two coupled dynamic Markov networks in Fig. 2 (b), as detailed in Appendix II. They are computed by combining the incoming messages from both its forward and backward neighborhood as

\[
p(L_t | O, S) = p(O_t | L_t) m_{BL}(L_t)
\]

\[
\times \int_{L_{t-1}} p(L_t | L_{t-1} | O_{t-1}, S_{t-1}) dL_{t-1}
\]

\[
\times \int_{L_{t+1}} p(L_t | L_{t+1} | O_{t+1}, S_{t+1}) dL_{t+1},
\]

\[
p(B_t | O, S) = p(S_t | B_t) m_{LB}(B_t)
\]

\[
\times \int_{B_{t-1}} p(B_t | B_{t-1} | O_{t-1}, S_{t-1}) dB_{t-1}
\]

\[
\times \int_{B_{t+1}} p(B_t | B_{t+1} | O_{t+1}, S_{t+1}) dB_{t+1},
\]

where \(m_{BL}(L_t) \) and \(m_{LB}(B_t) \) are messages updating at time \(t \) from \(B_t \) to \(L_t \) and from \(L_t \) to \(B_t \) in both directions. \(p(L_{t-1} | O_{t-1}, S_{t-1}) \) and \(p(B_{t-1} | O_{t-1}, S_{t-1}) \) are the inference results at the previous time step \(t - 1 \) and \(p(L_{t+1} | O_{t+1}, S_{t+1}) \) and \(p(B_{t+1} | O_{t+1}, S_{t+1}) \) are the inference results at the next time step \(t + 1 \). Fig. 3 illustrates the inference process of the two coupled dynamic Markov networks to obtain the joint video object discovery and segmentation.

IV. INFERENCE

We first perform Bayesian inference of the Markov network in Fig. 2 (a) to obtain the marginal posterior probabilities \(p(L_t | O, S) \) and \(p(B_t | O, S) \). With loop-less graph models in Bayesian inference, belief propagation guarantees the exact inference through a local message passing process [46], [47]. As is the case in Fig. 2 (a), Bayesian inference is performed using belief propagation. For ease of reading, the detailed derivation of the formula for the inference is summarized in Appendix I. They are calculated by iterating the message passing until convergence as

\[
p(L_t | O, S) \propto p(O_t | L_t) m_{BL}(L_t), \quad (2)
\]

\[
p(B_t | O, S) \propto p(S_t | B_t) m_{LB}(B_t), \quad (3)
\]

V. IMPLEMENTATION DETAILS

In this section, we further present the detailed definitions of the likelihood functions, the compatibility functions, and the dynamic models of object discovery and object segmentation.

A. Likelihood Functions

Likelihood function of object discovery. As illustrated in Fig. 4, the object proposals generated for each frame (e.g.,
by [27]) have three forms: (1) object region, which is part of (or exactly) the object; (2) possible object region, which simultaneously contains parts of the object and the background; and (3) non-object region, which is part of (or exactly) the background.

It is ideal to select the “object region” that almost exactly contains the object instead of the “possible object region” and “non-object region”. Then the question becomes: how to measure the confidence of a region being an object? We identified three useful measures: (1) saliency, which indicates that a region being most salient is more likely to be an object; (2) objectness, which requires the appearance of a region to be typical to a whole object; and (3) motility, which requires a region to have distinct motion patterns relative to its surrounding.

Thus, we define an object score by combining the above three measures to estimate how likely an object proposal \(o_{t,i} \) is to be a whole object as

\[
r(o_{t,i}) = r_s(o_{t,i}) \cdot r_a(o_{t,i}) \cdot r_m(o_{t,i}),
\]

where \(r_s(o_{t,i}) \) is a saliency score, which is the mean value of the saliency values (e.g., computed by [48]) within \(o_{t,i} \); \(r_a(o_{t,i}) \) is an objectness score denoting the confidence that \(o_{t,i} \) contains an object, which is computed by scoring the edge map described in [49]; and \(r_m(o_{t,i}) \) is a motion score, measuring the confidence that \(o_{t,i} \) is a coherently moving object. It is computed similarly to \(r_a(o_{t,i}) \), but replacing the edge map with the motion boundary map [50].

Then, the likelihood function \(p(O_t|L_t) \) of object discovery is calculated as

\[
p(O_t = o_{t,i}|L_t) = \widehat{r}(o_{t,i}); i \in \{1, \cdots, K\},
\]

where \(\widehat{r}(o_{t,i}) \) is the object score normalized across \(V \), and \(K \) is the number of proposals that \(O_t \) contains.

Likelihood function of object segmentation. The object proposals in the spatio-temporal object proposal tube of \(V \) are treated as foreground objects, and the remaining parts are naturally treated as background. We learn two color Gaussian Mixture Models (GMMs) for the object and the background across \(V \), and denote them as \(h_{i} \) and \(h_{n} \), respectively. The likelihood function of object segmentation is then defined as

\[
p(S_t = s_{t,j}|B_t) = h_{b_{t,j}}(s_{t,j}); j \in \{1, \cdots, J\},
\]

where \(J \) is the number of superpixels that \(S_t \) contains.

C. Dynamic Models

Dynamic model of object discovery. The object discovery labeling \(L \) should be temporally consistent throughout \(V \). Thus, the dynamic model of object discovery is defined as

\[
p(L_t = l_{t,m}|L_{t-1}) = p_m^o; m \in \{1, \cdots, K\},
\]

where

\[
p_m^o = \delta_m \cdot (\exp(-\alpha_m) + \exp(-\beta_m)),
\]

is the transition probability between \(o_{t,m} \) and its temporally adjacent object proposal \(o_{t-1,i} \), where \(i \) is found by

\[
i = \arg \max_{\nu \in \{1, \cdots, K\}} \text{IoU}(o_{t,m}, \text{Warp}(o_{t-1,\nu})),
\]

where \(\text{Warp}(o_{t-1,\nu}) \) is the warped region from \(o_{t-1,\nu} \) in frame \(f_{t-1} \) to its neighboring frame \(f_t \) by optical flow [51]. \(\delta_m = \delta(l_{t-1,i} \neq l_{t,m}) \) is an indicator variable. It is 1 when \(l_{t-1,i} \neq l_{t,m} \), i.e., the object discovery labels of \(o_{t-1,i} \) and \(o_{t,m} \) are inconsistent, and 0 otherwise. \(\alpha_m = \text{EMD}(h_{i}(o_{t-1,i}), h_{(o_{t,m})}) \) is the earth mover’s distance (EMD) [52] between the color histograms of \(o_{t-1,i} \) and

B. Compatibility Functions

The object proposal selected by object discovery should have a large overlap with the foreground object obtained by object segmentation. Thus, the compatibility function \(\Psi_{LB}(L_t, B_t) \) (from \(B_t \) to \(L_t \)) is defined as

\[
\Psi_{LB}(L_t, B_t) = \text{IoU}(o_{t,i}, B_t); i \in \{1, \cdots, K\},
\]

which means the intersection-over-union score (IoU) of \(o_{t,i} \) and the segmented foreground \(B_t \) of frame \(f_t \), calculated by Eq. (16). The object proposals ranked by the compatibility function are illustrated in Fig. 5.

The compatibility function \(\Psi_{BL}(B_t, L_t) \) (from \(B_t \) to \(L_t \)) is defined as

\[
\Psi_{BL}(B_t, L_t) = \frac{|s_{t,j} \cap O_t(1)|}{|s_{t,j}|}; j \in \{1, \cdots, J\},
\]

which is the rate that superpixel \(s_{t,j} \) covered by the selected object proposal \(O_t(1) \).

![Fig. 4. Illustration of three types of object proposals: (a) object region, (b) possible object region, and (c) non-object region.](image1)

![Fig. 5. The object proposals ranked by the compatibility function based on the spatio-temporal object segmentation tube obtained by object segmentation.](image2)
frames as negative. This process will iterate upon convergence. Specifically, benefited from the iterative training, the impact of noisy frames in the positive examples on training accuracy is very limited.

VI. EXPERIMENTS AND DISCUSSIONS

A. Experimental Setting

Evaluation datasets. We conduct extensive experiments on five video datasets to evaluate our joint video object discovery and segmentation method. We first evaluate the object segmentation performance from a single video without noisy frames on the SegTrack dataset [30], [31], the YouTube-Objects dataset [32], and the DAVIS dataset [33], where all video frames contain the objects. We proceed to evaluate the joint object discovery and segmentation performance from a single video with noisy frames on the XJTU-Stevens dataset [34], [35] and a newly introduced Noisy-ViDiSeg dataset in this paper, both have many frames that do not contain the objects. Some of the statistics of the above datasets (or their subsets) used for evaluation are summarized in Table I. They are

- **SegTrack** dataset [30], [31] is one of the most widely used video object segmentation dataset. It contains 14 videos of 1,066 frames with pixel-wise annotations. As our method focuses on single object segmentation, we use the 8 videos that contain only one object.
- **YouTube-Objects** dataset [32], [13], [60] is mainly used for video object detection evaluation, while its subset indicated in [60] and the ground truth provided by [13] are often used for video object segmentation evaluation. This subset has 126 challenging videos of 10 categories with 20,101 frames, where 2,127 frames are labeled. As there are videos containing multiple objects, we only use the 83 videos of 8 categories containing only one object, with 12,941 frames in total and 1,379 labeled frames.
- **DAVIS** dataset [33] is the latest and most challenging video object segmentation dataset. It includes 50 high-quality videos of 3,455 frames, and has pixel-wise labels for the prominent moving objects. The videos are unconstrained in nature and exhibit occlusions, motion blur, and large variation in appearance.
- **XJTU-Stevens** dataset [34], [35] is a video object co-segmentation and classification dataset. It contains 10 categories of 101 publicly available web videos for a total of 13,398 frames, and 3.7% of them are noisy frames not containing the objects. The objects in each
video category exhibit large differences in appearance, size, shape, viewpoint, and pose.

- **Noisy-ViDiSeg dataset** is a video object discovery and segmentation dataset newly introduced in this paper, in order to accurately evaluate our proposed method and to build a benchmark for future research. It includes 11 videos of 11 categories with 1,961 frames in total, and each video contains a large number of noisy frames. The percentage of noisy frames is 33.1%. Fig. 7 details the statistics. As shown in Fig. 8, we manually assign the noisy frames with frame-level labels indicating if they contain the object, and the positive frames with both frame-level labels and pixel-wise segmentation labels.

Evaluation metric. The intersection-over-union score is used for object segmentation evaluation, and is defined as

$$\text{IoU} = \frac{|\text{Seg} \cap \text{GT}|}{|\text{Seg} \cup \text{GT}|}$$

(16)

where \(\text{Seg}\) is the segmentation result, and \(\text{GT}\) is the ground truth segmentation.

The labeling accuracy is employed for object discovery evaluation, and is defined as

$$\text{Acc} = \frac{TP + TN}{Total},$$

(17)

where \(TP\), \(TN\) and \(Total\) are the numbers of true positive, true negative and total frames, respectively.

Baselines. To fully evaluate our proposed method, we compare our method with six state-of-the-art methods, including four single video object segmentation methods (VOS [4], FOS [3], BVS [15], and OSS [16]) and two multi-video object co-segmentation methods (VOC [40] and VDC [35]). They are

- **VOS [4]:** an unsupervised single video object segmentation method which automatically discovers key segments and groups them to predict the foreground object.
- **FOS [3]:** an unsupervised single video object segmentation method which separates the target object via a rapid estimate of which pixels are inside the object.
- **BVS [15]:** a semi-supervised single video object segmentation method which separates the target objects based on operations in the bilateral space. It exploits the object segmentation mask of the first frame.
- **OSS [16]:** a semi-supervised single video object segmentation method which separates the object from the background based on a fully-convolutional neural network, given the mask of the first frame.
- **VOC [40]:** an unsupervised multi-video object co-segmentation method which can segment multiple objects by sampling, tracking and matching object proposals via a regulated maximum weight clique extraction scheme.
- **VDC [35]:** a supervised multi-video object discovery and co-segmentation method which can discover and segment the common objects from multiple videos with a few noisy frames, given the frame-level discovery labels of three video frames.

B. Object Segmentation from a Single Video without Noisy Frames

We first evaluate the object segmentation performance from a single video without noisy frames of our method on the SegTrack dataset [30], [31], YouTube-Objects dataset [32], and DAVIS dataset [33]. All video frames of these three video datasets contain the objects.

Evaluation on the SegTrack dataset. As our method focuses on single object segmentation, we test our method on the eight videos that contain only one object, and compare with four single video object segmentation methods (VOS [4], FOS [3], BVS [15], and OSS [16]). The average IoU scores and some example results of them are presented in Table II and
TABLE II

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>birdfall2</td>
<td>49.4</td>
<td>17.5</td>
<td>63.5</td>
<td>38.1</td>
<td>34.1 63.0</td>
</tr>
<tr>
<td>bird of paradise</td>
<td>92.4</td>
<td>81.8</td>
<td>91.7</td>
<td>67.4</td>
<td>84.5 94.5</td>
</tr>
<tr>
<td>frog</td>
<td>75.7</td>
<td>54.1</td>
<td>76.4</td>
<td>71.0</td>
<td>53.6 82.1</td>
</tr>
<tr>
<td>girl</td>
<td>64.2</td>
<td>54.9</td>
<td>79.1</td>
<td>87.9</td>
<td>56.0 85.5</td>
</tr>
<tr>
<td>monkey</td>
<td>82.6</td>
<td>65.0</td>
<td>85.9</td>
<td>88.2</td>
<td>69.7 69.0</td>
</tr>
<tr>
<td>parachute</td>
<td>94.6</td>
<td>76.3</td>
<td>93.8</td>
<td>79.8</td>
<td>86.3 91.2</td>
</tr>
<tr>
<td>soldier</td>
<td>60.8</td>
<td>39.8</td>
<td>56.4</td>
<td>85.8</td>
<td>56.1 80.5</td>
</tr>
<tr>
<td>worm</td>
<td>62.2</td>
<td>72.8</td>
<td>65.5</td>
<td>63.1</td>
<td>63.5 78.8</td>
</tr>
<tr>
<td>Avg.</td>
<td>72.7</td>
<td>57.8</td>
<td>76.5</td>
<td>72.2</td>
<td>39.2 80.6</td>
</tr>
</tbody>
</table>

The average IoU scores of our method and four single video object segmentation methods on eight videos that contain only one object of the SegTrack dataset. Higher values are better.

The results show that our method outperforms all other state-of-the-art methods. But on the videos of monkey and soldier, our method erroneously segment the shadow of the monkey in water and the shadow of the soldier as foreground objects, and thus does not performs well. The above results clearly demonstrate that our method can handle certain variations in shape (frog and worm), appearance (bird of paradise), and illumination (parachute), but has encountered difficulties when there are large shadows that have similar motion or color with the objects (monkey and soldier).

Evaluation on the YouTube-Objects dataset. Similarly, we evaluate our method and compare with three single video object segmentation methods (FOS [3], BVS [15], and OSS [16]) on the 83 videos that contain only one object. We present the average IoU scores of them in Table III, and some example results of them in Fig. 10. For fair comparison, we computed the IoU scores of BVS [15] and OSS [16] using the final segmentation masks provided by them, respectively.

The results show that our method outperforms FOS [3] and BVS [15], but performs poorer than OSS [16]. This is because the semi-supervise method OSS [16] can leverage the segmentation mask of the first frame to separate the object from its ambiguous surrounding, while our method segments the object and its connective surrounding with similar motion as a whole. As illustrated by the videos of motorbike and boat in Fig. 11, the persons on the motorbike and boat are all labeled as background in the ground truth, although they move together with the motorbike and boat.

Evaluation on the DAVIS dataset. We test our method and compare with four single video object segmentation methods (VOS [4], FOS [3], BVS [15], and OSS [16]) on all 50 videos of the DAVIS dataset. The average IoU scores and some qualitative results of them are presented in Table IV.
Evaluation on the XJTU-Stevens dataset. The XJTU-Stevens dataset does not contain the objects. ViDiSeg dataset, both of them have many noisy frames that our method on the XJTU-Stevens dataset [34], [35] and Noisy-Video object co-segmentation and classification dataset, in which 3.7% of the frames are noisy frames. Besides the four single video segmentation methods (VOS [4], FOS [3], BVS [15], and OSS [16]), we also compare our method with two multi-video object co-segmentation methods (VOC [40] and VDC [35]). We implement two versions of FOS [3], BVS [15], and OSS [16]), we also compare our method with the semi-supervised method OSS [16] uses the segmentation mask of the first frame to facilitate the segmentation procedure. There is a margin of 5.4% between our method and OSS [16]. This is mainly because the semi-supervised method OSS [16] uses not only the segmentation mask of the first frame of each video, but also a large video set (30 of 50 videos) of the DAVIS dataset for training to obtain their final results on the remaining 20 videos, while our method is unsupervised.

C. Joint Object Discovery and Segmentation from a Single Video with Noisy Frames

We further evaluate the joint object discovery and segmentation performance from a single video with noisy frames of our method on the XJTU-Stevens dataset [34], [35] and Noisy-ViDiSeg dataset, both of them have many noisy frames that do not contain the objects.

Evaluation on the XJTU-Stevens dataset. The XJTU-Stevens dataset is a video object co-segmentation and classification dataset, in which 3.7% of the frames are noisy frames. Besides the four single video segmentation methods (VOS [4], FOS [3], BVS [15], and OSS [16]), we also compare our method with two multi-video object co-segmentation methods (VOC [40] and VDC [35]). We implement two versions of VOS FOS BVS OSS Ours

<table>
<thead>
<tr>
<th>Video</th>
<th>VOS</th>
<th>FOS</th>
<th>BVS</th>
<th>OSS</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>bear</td>
<td>89.1</td>
<td>89.8</td>
<td>95.5</td>
<td>-</td>
<td>85.0</td>
</tr>
<tr>
<td>Blackswan</td>
<td>84.2</td>
<td>73.2</td>
<td>94.3</td>
<td>94.2</td>
<td>83.4</td>
</tr>
<tr>
<td>Bmx-Bumps</td>
<td>30.9</td>
<td>24.1</td>
<td>43.4</td>
<td>-</td>
<td>10.6</td>
</tr>
<tr>
<td>Bmx-Trees</td>
<td>19.3</td>
<td>18.0</td>
<td>38.2</td>
<td>55.5</td>
<td>33.5</td>
</tr>
<tr>
<td>Bus</td>
<td>6.5</td>
<td>36.1</td>
<td>64.4</td>
<td>-</td>
<td>56.5</td>
</tr>
<tr>
<td>Breakdance</td>
<td>54.9</td>
<td>46.7</td>
<td>50.0</td>
<td>70.8</td>
<td>42.5</td>
</tr>
<tr>
<td>Breakdance-Flare</td>
<td>55.9</td>
<td>61.6</td>
<td>72.7</td>
<td>-</td>
<td>45.8</td>
</tr>
<tr>
<td>Camell</td>
<td>57.9</td>
<td>56.2</td>
<td>66.9</td>
<td>85.1</td>
<td>64.7</td>
</tr>
<tr>
<td>Car-Roundabout</td>
<td>64.0</td>
<td>80.8</td>
<td>85.1</td>
<td>95.3</td>
<td>68.3</td>
</tr>
<tr>
<td>Car-Shadow</td>
<td>58.9</td>
<td>69.8</td>
<td>57.8</td>
<td>93.7</td>
<td>59.3</td>
</tr>
<tr>
<td>Car-Turn</td>
<td>80.6</td>
<td>85.1</td>
<td>84.4</td>
<td>-</td>
<td>75.0</td>
</tr>
<tr>
<td>Cows</td>
<td>33.7</td>
<td>79.1</td>
<td>89.5</td>
<td>94.6</td>
<td>65.6</td>
</tr>
<tr>
<td>Dance-Jump</td>
<td>74.8</td>
<td>59.8</td>
<td>74.5</td>
<td>-</td>
<td>38.9</td>
</tr>
<tr>
<td>Dance-Twirl</td>
<td>38.0</td>
<td>45.3</td>
<td>49.2</td>
<td>67.0</td>
<td>44.9</td>
</tr>
<tr>
<td>Dog</td>
<td>69.2</td>
<td>70.8</td>
<td>72.3</td>
<td>90.7</td>
<td>66.3</td>
</tr>
<tr>
<td>Dog-Agility</td>
<td>13.2</td>
<td>28.0</td>
<td>34.5</td>
<td>-</td>
<td>45.2</td>
</tr>
<tr>
<td>Drift-Chicane</td>
<td>18.8</td>
<td>66.7</td>
<td>3.3</td>
<td>83.5</td>
<td>6.2</td>
</tr>
<tr>
<td>Drift-Straight</td>
<td>19.4</td>
<td>68.3</td>
<td>40.2</td>
<td>67.6</td>
<td>56.4</td>
</tr>
<tr>
<td>Drift-Turn</td>
<td>25.5</td>
<td>53.3</td>
<td>29.9</td>
<td>-</td>
<td>50.2</td>
</tr>
<tr>
<td>Elephant</td>
<td>67.5</td>
<td>82.4</td>
<td>85.0</td>
<td>-</td>
<td>55.9</td>
</tr>
<tr>
<td>Flamingo</td>
<td>69.2</td>
<td>81.7</td>
<td>88.1</td>
<td>-</td>
<td>55.9</td>
</tr>
<tr>
<td>Goat</td>
<td>70.5</td>
<td>55.4</td>
<td>66.1</td>
<td>80.8</td>
<td>62.2</td>
</tr>
<tr>
<td>Hike</td>
<td>89.5</td>
<td>88.9</td>
<td>75.5</td>
<td>-</td>
<td>75.5</td>
</tr>
<tr>
<td>Hockey</td>
<td>51.5</td>
<td>46.7</td>
<td>82.9</td>
<td>-</td>
<td>50.5</td>
</tr>
<tr>
<td>Horsejump-High</td>
<td>37.0</td>
<td>57.8</td>
<td>80.1</td>
<td>78.0</td>
<td>63.8</td>
</tr>
<tr>
<td>Horsejump-Low</td>
<td>63.0</td>
<td>52.6</td>
<td>60.1</td>
<td>-</td>
<td>49.9</td>
</tr>
<tr>
<td>Kite-Surf</td>
<td>58.5</td>
<td>27.2</td>
<td>42.5</td>
<td>68.6</td>
<td>48.9</td>
</tr>
<tr>
<td>Kite-Walk</td>
<td>19.7</td>
<td>64.9</td>
<td>87.0</td>
<td>-</td>
<td>67.0</td>
</tr>
<tr>
<td>Libby</td>
<td>61.1</td>
<td>50.7</td>
<td>77.6</td>
<td>80.8</td>
<td>34.2</td>
</tr>
<tr>
<td>Lucia</td>
<td>84.7</td>
<td>64.4</td>
<td>90.1</td>
<td>-</td>
<td>68.9</td>
</tr>
<tr>
<td>Mallard-Fly</td>
<td>58.5</td>
<td>60.1</td>
<td>60.6</td>
<td>-</td>
<td>38.8</td>
</tr>
<tr>
<td>Mallard-Water</td>
<td>78.5</td>
<td>8.7</td>
<td>90.7</td>
<td>-</td>
<td>38.3</td>
</tr>
<tr>
<td>Motocross-Bumps</td>
<td>68.9</td>
<td>61.7</td>
<td>40.1</td>
<td>-</td>
<td>58.6</td>
</tr>
<tr>
<td>Motocross-Jump</td>
<td>28.8</td>
<td>60.2</td>
<td>34.1</td>
<td>81.6</td>
<td>44.6</td>
</tr>
<tr>
<td>Motorbike</td>
<td>57.2</td>
<td>55.9</td>
<td>56.3</td>
<td>-</td>
<td>53.6</td>
</tr>
<tr>
<td>Paragliding</td>
<td>86.1</td>
<td>72.5</td>
<td>87.5</td>
<td>-</td>
<td>74.8</td>
</tr>
<tr>
<td>Paragliding-Launch</td>
<td>55.9</td>
<td>50.0</td>
<td>64.0</td>
<td>62.5</td>
<td>56.7</td>
</tr>
<tr>
<td>Parkour</td>
<td>41.0</td>
<td>45.8</td>
<td>75.6</td>
<td>85.5</td>
<td>64.4</td>
</tr>
<tr>
<td>Rhino</td>
<td>67.5</td>
<td>77.6</td>
<td>82.2</td>
<td>-</td>
<td>73.6</td>
</tr>
<tr>
<td>Rollerblade</td>
<td>51.0</td>
<td>31.8</td>
<td>58.8</td>
<td>-</td>
<td>39.9</td>
</tr>
<tr>
<td>Scooter-Black</td>
<td>50.2</td>
<td>52.2</td>
<td>33.7</td>
<td>71.1</td>
<td>47.1</td>
</tr>
<tr>
<td>Scooter-Gray</td>
<td>36.3</td>
<td>32.5</td>
<td>50.8</td>
<td>-</td>
<td>47.0</td>
</tr>
<tr>
<td>Soapbox</td>
<td>75.7</td>
<td>41.0</td>
<td>78.9</td>
<td>81.2</td>
<td>58.6</td>
</tr>
<tr>
<td>Soccerball</td>
<td>87.9</td>
<td>84.3</td>
<td>84.4</td>
<td>-</td>
<td>76.8</td>
</tr>
<tr>
<td>Stroller</td>
<td>75.9</td>
<td>58.0</td>
<td>76.7</td>
<td>-</td>
<td>52.3</td>
</tr>
<tr>
<td>Surf</td>
<td>89.3</td>
<td>47.5</td>
<td>49.2</td>
<td>-</td>
<td>70.4</td>
</tr>
<tr>
<td>Swing</td>
<td>71.0</td>
<td>43.1</td>
<td>78.4</td>
<td>-</td>
<td>59.9</td>
</tr>
<tr>
<td>Tennis</td>
<td>76.2</td>
<td>38.8</td>
<td>73.7</td>
<td>-</td>
<td>36.8</td>
</tr>
<tr>
<td>Train</td>
<td>45.0</td>
<td>83.1</td>
<td>87.2</td>
<td>-</td>
<td>46.0</td>
</tr>
</tbody>
</table>

Avg. 56.9 37.5 66.5 79.8 54.9 74.4
our method outperforms all other methods in terms of both IoU scores for object segmentation and labeling accuracies for object discovery, except VDC [35].

In terms of object segmentation, our method is greatly superior in IoU score to not only four single video object segmentation methods (VOS [4], FOS [3], BVS [15], and OSS [16]) by a margin from 2% to 28%, but also the multi-video object co-segmentation method VOC [40] by a margin of 5.3%.

Although our method is inferior to the multi-video object discovery and co-segmentation method VDC [35], our method is better than its variant VDS [35], *i.e.*, a single video object discovery and segmentation method. The reasons are two-fold, one is that VDC [35] can leverage the contextual information of the common objects from multiple videos to facilitate both the object discovery and object segmentation of each single video, and the other one is that VDC [35] is bootstrapped with the frame-level object discovery labels for three frames of each video.

In terms of object discovery, our method achieves a higher labeling accuracy than VOS [4], FOS [3], BVS [15], OSS [16], VOC [40], and VDS [35], but is slightly lower than VDC [35]. The reasons are three-fold, the first one is that VOS [4], FOS [3], BVS [15], VOC [40], and VDS [35] almost all cannot distinguish the positive frames that contain the object from the noisy frames, thus their labeling accuracies of object discovery are equal to or lower than the actual positive rate (APR) of the frames of each video category.

The second one is that only 3.7% of the frames are noisy frames in the video dataset, and most of the noisy frames come from the different video shot with the positive frames, thus it is easy to identify the noisy frames. The last but the most important one is that our method and VDC [35] indeed are able to identify the object from the noisy video, where VDC [35] needs to be bootstrapped by three frame-level discovery labels, while our method does not need any supervision.

Evaluation on the Noisy-ViDiSeg dataset
The Noisy-ViDiSeg dataset is a newly introduced object discovery and segmentation dataset in this paper, in which 33.1% of the frames are noisy frames. We test our method and compare with four single video object segmentation methods (VOS [4], FOS [3], BVS [15], and OSS [16]) and two multi-video object co-segmentation methods (VOC [40] and VDC [35]). Because there is only one video in each video category, VOC [40] becomes a single video object segmentation method, and VDC [35] becomes a single video object discovery and segmentation method, *i.e.*, VDS [35].

The average IoU scores of object segmentation, the labeling accuracies of object discovery, and some qualitative results are presented in Table VII, Table VIII and Fig. 14, respectively. They show that, our method outperforms all other methods in terms of both object segmentation and object discovery. This strongly validates the efficacy of our joint object discovery and segmentation method.

For object segmentation, our method improves the state-of-the-art methods by a margin from 4.2% to 53.4%. This is mainly because all the other methods encounter difficulties when the object in each video may disappear at any time and exhibits complex temporary occlusions and dramatic changes in appearance, size, and shape, while our method can better handle these cases.

For object discovery, our method outperforms the state-of-the-art methods by a significant margin from 8.4% to 32.3%. The reason is that our method is able to distinguish the video frames that contain the object from the noisy frames in a single video.
video, while all the other methods do not have the ability or the ability is too weak, when there are a large number of noisy frames in a single video.

Please note that, we also present the average IoU scores and some examples of the object regions selected by object discovery of our method on the above five datasets. They show that the object regions selected by object discovery almost always focus on the object, and the majority of them belong to the type of “object region” as defined in Section V-C, this is due to the collaboration of object discovery and object segmentation of our method. Moreover, although the average IoU scores of the object regions selected by object discovery of our method are not high, compared to the average IoU scores obtained by object segmentation of our method and other state-of-the-art methods, they indeed facilitate the object segmentation procedure of our method.

Impact of superpixel and object proposal algorithms. To quantify the impact of the different superpixel algorithms, we compare the performance of our method with SLIC [42], GS [61] and ES [62]. To quantify the impact of different object proposal algorithms, we compare the performance of our method with GOP [27] and COP [36]. With these different variants of our methods, the average IoU scores on the Noisy-ViDiSeg dataset are summarized in Table IX and some qualitative examples are illustrated in Fig 15. As shown in Table IX, the performance differences are within 2.6%, demonstrating that our method is robust to these variations and not tied to specific superpixel or object proposal algorithms.

To summarize, the results on the above five datasets clearly reveal that, although our method produces inferior results on video datasets without noisy frames, we are able to obtain better results on video datasets with noisy frames, when compared with state-of-the-art. Moreover, as there are more noisy frames in the video dataset, the performance of our method becomes better, while other methods perform poorer. This strongly demonstrates that our method is capable of jointly discovering and segmenting the object from a single noisy video, where object discovery and object segmentation work in a collaborative way.
Given the inference results both at previous time \(t - 1 \)
\[
p(L_{t-1} \mid O_{t-1}, S_{t-1}) \quad \text{and} \quad p(B_{t-1} \mid \hat{O}_{t-1}, \hat{S}_{t-1})
\]
and next time \(t + 1 \)
\[
p(L_{t+1} \mid O_{t+1}, S_{t+1}) \quad \text{and} \quad p(B_{t+1} \mid O_{t+1}, S_{t+1})
\]
the messages updating at time \(t \) from \(B \) to \(L \) and from \(L \) to \(B \) are executed in a bi-directional way as

\[
m_{BL}(L_t) \leftarrow \int_{B_t} \left[p(S_t \mid B_t) \Psi_{BL}(B_t, L_t)\right] m_{BL}(L_t)
\] \hspace{1cm} (23)

\[
\times \int_{B_{t-1}} p(B_t \mid B_{t-1}) p(B_{t-1} \mid O_{t-1}, S_{t-1}) dB_{t-1}
\] \hspace{1cm} (24)

\[
m_{LB}(B_t) \leftarrow \int_{L_{t+1}} \left[p(O_t \mid L_t) \Psi_{LB}(L_t, B_t)\right] m_{LB}(B_t)
\]

\[
\times \int_{L_{t-1}} p(L_t \mid L_{t-1}) p(L_{t-1} \mid O_{t-1}, S_{t-1}) dL_{t-1}
\]

The marginal posterior probabilities of \(L \) and \(B \) at time \(t \) are computed by combining the incoming messages from both its forward and backward neighborhood as

\[
p(L_t \mid O, S) = p(O_t \mid L_t) m_{BL}(L_t)
\]

\[
\times \int_{L_{t-1}} p(L_t \mid L_{t-1}) p(L_{t-1} \mid O_{t-1}, S_{t-1}) dL_{t-1}
\]

\[
p(B_t \mid O, S) = p(S_t \mid B_t) m_{LB}(B_t)
\]

\[
\times \int_{B_{t-1}} p(B_t \mid B_{t-1}) p(B_{t-1} \mid O_{t-1}, S_{t-1}) dB_{t-1}
\]

\[
\times \int_{B_{t+1}} p(B_t \mid B_{t+1}) p(B_{t+1} \mid O_{t+1}, S_{t+1}) dB_{t+1}.
\]

REFERENCES

Ziyi Liu received the B.S. degree in Control Science and Engineering from Xi’an Jiaotong University in 2015. He is currently a Ph.D. student with the Institute of Artificial Intelligence and Robotics of Xi’an Jiaotong University. His research interests include computer vision and machine learning. He is a student member of the IEEE.

Le Wang (M’14) received the B.S. and Ph.D. degrees in Control Science and Engineering from Xi’an Jiaotong University in 2008 and 2014, respectively. From 2013 to 2014, he was a visiting Ph.D. student with Stevens Institute of Technology. From 2016 to 2017, he is a visiting scholar with Northwestern University. He is currently an Associate Professor with the Institute of Artificial Intelligence and Robotics of Xi’an Jiaotong University. His research interests include computer vision, machine learning, and their application for web images and videos. He is the author of more than 10 peer reviewed publications in prestigious international journals and conferences. He is a member of the IEEE.

Gang Hua (M’03–SM’11) was enrolled in the Special Class for the Gifted Young of Xi’an Jiaotong University (XJTU) in 1994 and received the B.S. degree in Automatic Control Engineering from XJTU in 1999. He received the M.S. degree in Control Science and Engineering in 2002 from XJTU, and the Ph.D. degree in Electrical Engineering and Computer Science at Northwestern University in 2006. He is currently a Principle Researcher/Research Manager at Microsoft Research. Before that, he was an Associate Professor of Computer Science at Stevens Institute of Technology. He also held an Academic Advisor position at IBM T. J. Watson Research Center between 2011 and 2014. He was a Research Staff Member at IBM Research T. J. Watson Center from 2010 to 2011, a Senior Researcher at Nokia Research Center, Hollywood from 2009 to 2010, and a Scientist at Microsoft Live Labs Research from 2006 to 2009. He is currently an Associate Editor in Chief for CVIU, and Associate Editors for IJCV, IEEE T-IP, IEEE T-CSVT, IEEE Multimedia, and MVA. He also served as the Lead Guest Editor on two special issues in TPAMI and IJCV, respectively. He is a program chair of CVPR 2019&2022. He is an area chair of CVPR 2015&2017, ICCV 2011&2017, ICIP 2012&2013, and ACM MM 2011&2012&2015&2017. He is the author of more than 150 peer reviewed publications in prestigious international journals and conferences. He holds 19 issued US patents and has 20 more US patents pending. He is the recipient of the 2015 IAPR Young Biometrics Investigator Award for his contribution on Unconstrained Face Recognition from Images and Videos, and a recipient of the 2013 Google Research Faculty Award. He is an IAPR Fellow, an ACM Distinguished Scientist, and a senior member of the IEEE.

Ying Wu (SM’06–F’16) received the B.S. degree from the Huazhong University of Science and Technology, Wuhan, China, the M.S. degree from Tsinghua University, Beijing, China, and the Ph.D. degree in Electrical and Computer Engineering from the University of Illinois at Urbana-Champaign (UIUC), Urbana, IL, USA, in 1994, 1997, and 2001, respectively. From 1997 to 2001, he was a Research Assistant with the Beckman Institute for Advanced Science and Technology, UIUC. From 1999 to 2000, he was a Research Intern with Microsoft Research, Redmond, WA, USA. In 2001, he joined the Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA, as an Assistant Professor. He was promoted as an Associate Professor in 2007 and a Full Professor in 2012. He is currently a Full Professor of Electrical Engineering and Computer Science with Northwestern University. His current research interests include computer vision, image and video analysis, pattern recognition, machine learning, multimedia data mining, and human-computer interaction. He received the Robert T. Chien Award by UIUC in 2001 and the NSF CAREER Award in 2003. He serves as an Associate Editor for the IEEE Transactions on Pattern Analysis and Machine Intelligence, the IEEE Transactions on Image Processing, the IEEE Transactions on Circuits and Systems for Video Technology, the SPIE Journal of Electronic Imaging, and the IAPR Journal of Machine Vision and Applications. He is a fellow of the IEEE.

Qilin Zhang received the B.E. degree in Electrical Information Engineering from the University of Science and Technology of China, Hefei, China, in 2009, the M.S. degree in Electrical and Computer Engineering from University of Florida, Gainesville, Florida, USA in 2011, and the Ph.D. degree in Computer Science from Stevens Institute of Technology, Hoboken, New Jersey, USA, in 2016. He is currently a Senior Research Engineer with Here Technologies, Chicago, Illinois, USA. His research interests include computer vision, machine learning and autonomous driving. He is the author of more than 10 peer reviewed publications in international journals and conferences. He is a member of the IEEE.
Nanning Zheng (SM’94-F’06) graduated in 1975 from the Department of Electrical Engineering, Xi’an Jiaotong University (XJTU), received the ME degree in Information and Control Engineering from Xi’an Jiaotong University in 1981, and a Ph. D. degree in Electrical Engineering from Keio University in 1985. He is currently a Professor and the director with the Institute of Artificial Intelligence and Robotics of Xi’an Jiaotong University. His research interests include computer vision, pattern recognition, computational intelligence, and hardware implementation of intelligent systems. Since 2000, he has been the Chinese representative on the Governing Board of the International Association for Pattern Recognition. He became a member of the Chinese Academy Engineering in 1999. He is a fellow of the IEEE.