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ABSTRACT

Inspired by the recent spatio-temporal action localization ef-
forts with tubelets (sequences of bounding boxes), we present
a new spatio-temporal action detector Segment-tube, which
consists of sequences of per-frame segmentation masks. The
proposed Segment-tube detector can temporally pinpoint the
starting/ending frame of each action class in the presence
of preceding/subsequent interference actions in untrimmed
videos. Simultaneously, the Segment-tube detector produces
per-frame segmentation masks instead of bounding boxes, of-
fering superior spatial accuracy to tubelets. This is achieved
by alternating iterative optimization between temporal action
localization and spatial action segmentation. Experimen-
tal results on multiple datasets validate the efficacy of the
proposed detector.

Index Terms— Action Localization, Action Segmenta-
tion, 3D ConvNets, LSTM

1. INTRODUCTION

Joint spatio-temporal action localization has attracted signifi-
cant attention in recent years [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14], whose objectives include action classification (deter-
mining whether a specific action is present), temporal local-
ization (pinpointing the starting/ending frame of the specific
action) and spatio-temporal localization (typically bounding
box regression on 2D frames, e.g., [15, 16]). Such efforts in-
clude local feature based methods [10], convolution neural
networks (ConvNets or CNNs) based methods [3, 7], and 3D
ConvNets based methods [4, 13]. Recently, long short-term
memory (LSTM) based recurrent neural networks (RNNs) are
added on top of CNNs for action classification [5,17] and ac-
tion localization [6].

Despite the successes of the prior methods, there are mul-
tiple limiting factors impeding practical applications. For ex-
ample, [5, 7, 8] conduct action recognition only on trimmed
videos, where each video contain only one action without in-
terferences from other potentially confusing actions; [3, 6, 9,
10,11,12,13,14] emphasize only on temporal action localiza-
tion with untrimmed video; while [15, 16] implement spatio-
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Fig. 1: Flowchart of the proposed Segment-tube detector. An input
untrimmed video (e.g., an entire pair figure skating video) typically
contains irrelevant preceding and subsequent actions (marked with
gray chunks) beyond the relevant frames of a specific action class
(e.g., the DeathSpirals, denoted with the blue chunk). The Segment-
tube detector alternates the optimization of temporal localization and
spatial segmentation iteratively, and outputs a sequence of per-frame
segmentation masks with precise starting/ending frames.

temporal action localization in trimmed videos with tubelet-
style (sequences of bounding boxes) detectors.

With applications in untrimmed videos with improved
spatial accuracy in mind, we propose the Segment-tube
spatio-temporal action localization detector, as summarized
in Fig. 1. Initialized with saliency [18] based image segmen-
tation on individual frames, our method performs temporal
action localization with 3D ConvNets and LSTM. In an al-
ternating and iterative manner, the Segment-tube detector
refines spatial per-frame segmentation by focusing on frames
identified by the temporal localization step. Upon practical
convergence, the final spatio-temporal action localization re-
sults are obtained in the format of a sequence of segmentation
masks (bottom row in Fig. 1).

We conduct extensive experiments on multiple datasets
consisting of untrimmed videos, including temporal action lo-
calization on the THUMOS 2014 dataset [2], and joint spatio-
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Fig. 2: Overview of the proposed coarse-to-fine temporal action localization.

temporal action localization on the ActSeg dataset, which is
a newly proposed spatio-temporal action localization dataset
with per-frame ground truth segmentation masks. The con-
tributions of this paper are as follows. (1) The Segment-tube
spatio-temporal action localization detector is proposed for
untrimmed videos, which produces per-frame segmentation
masks instead of sequences of bounding boxes. (2) The pro-
posed Segment-tube detector achieves collaborative optimiza-
tion of temporal localization and spatial segmentation with
a new iterative alternation approach. (3) The new ActSeg
dataset is proposed, which consists of untrimmed videos with
temporal annotations and per-frame ground truth segmenta-
tion labels.

2. PROBLEM FORMULATION

Given a video V = {ft}Tt=1 of T frames, our objective is
to determine whether a specific action k ∈ {1, · · · ,K} ap-
pears in V , and if so, temporally pinpoint the starting frame
fs(k) and ending frame fe(k) for action k. Simultaneously,
a sequence of segmentation masks B = {Bt}fe(k)t=fs(k)

within
such frame range should be obtained, with Bt being a binary
segmentation label for frame t. Practically, Bt consists of a
series of superpixels Bt = {bt,i}Nt

i=1, with Nt being the total
number of superpixels in frame ft.

2.1. Temporal Action Localization

A coarse-to-fine action localization strategy is implemented
to accurately find the temporal boundaries of the target ac-
tion k from an untrimmed video, as illustrated in Fig. 2. In-
spired by the recent success of ConvNets [19], this is achieved
by a cascaded 3D ConvNets with LSTM. The 3D ConvNets
consists of eight 3D convolution layers, five 3D pooling lay-
ers, and two fully connected layers. The fully-connected 7th
layer activation feature is used to represent the video clip. To
exploit the temporal correlations, we incorporate a two-layer
LSTM [5] using the Peephole implementation (with 256 hid-
den states in each layer) with 3D ConvNets.

Coarse Action Localization. The coarse action localization
determines the approximate temporal boundaries with a fixed
step-size (i.e., video clip length). We first generate a set of H
saliency-aware video clips {hj}Hj=1 with variable-length (16
and 32 frames per clip, [20]) sliding window with 75% over-
lap ratio on the initial segmentation Bo of video V (by using
saliency [18]), and proceed to train a cascaded 3D ConvNets
with LSTM that couples a proposal network and a classifica-
tion network. The proposal network is action class-agnostic,
it determines whether any actions (∀k ∈ {1, · · · ,K}) are
present in clip hj . The classification network determines
whether a specific action k is present in clip hj . We fol-
low [13] to construct training data from these video clips.

Specifically, we train the proposal network (3D ConvNets
with LSTM) to score each video clip hj with a proposal score
ppro
j =

[
ppro
j (1),ppro

j (0)
]T ∈ R2. Subsequently, a flag label

lflaj is obtained for each clip hj ,

lflaj =

{
1, if ppro

j (1) > ppro
j (0)

0, otherwise
, (1)

where lflaj = 1 denotes the video clip hj contains an action
(∀k ∈ {1, · · · ,K}), and lflaj = 0 otherwise.

A classification network (also a 3D ConvNets with
LSTM) is further trained to predict a (K + 1)-dimensional1

classification score pcla
j for each clip that contains an ac-

tion
{
hj |lflaj = 1

}
, based on which a specific action label

lspej ∈ {k}Kk=0 and score vspej ∈ [0, 1] for hj are assigned,

lspej = arg max
k=0,··· ,K

pcla
j (k), vspej = max

k=0,··· ,K
pcla
j (k). (2)

Fine Action Localization. With the obtained per-clip specific
action labels lspej , the fine action localization step predicts the
video class k′ (k′ ∈ {1, · · · ,K}) and subsequently obtains
fs(k

′) and fe(k′). We calculate the average of vspej over all

1Class 0 denotes the additional “background” class. Although the pro-
posal network prefilters most “background” clips, a background class is still
needed for robustness in the classification network.



video clips for each action label lspej . We take the label k′ with
the maximum average predicted score as the predicted action.
Subsequently, the action score αt(ft|k′) and the action label
lt for frame ft specifically are determined by

αt(ft|k′) =

∑
j∈{j|ft∈hj}

vspej

|{j|j ∈ {ft ∈ hj} |
, (3)

lt =

{
k′, if αt > γ

0, otherwise
, (4)

where |{·}| denotes the cardinality of set {·}. We empirically
set γ = 0.6. fs(lt) and fe(lt) are assigned as the starting
and ending frame of a series of consecutive frames sharing
the same label lt, respectively.

2.2. Spatial Action Segmentation

With the obtained temporal localization results, we further
conduct spatial segmentation. This problem is cast into a
spatio-temporal energy minimization framework,

E(B) =
∑

st,i∈V
Di(bt,i) +

∑
st,i,su,v∈Ni

Siv(bt,i, bu,v), (5)

where st,i is the ith superpixel in frame ft, which is computed
by SLIC [21]. Di(bt,i) composes the data term, denoting the
cost of labeling st,i with the label bt,i from a color and lo-
cation based appearance model. Siv(bt,i, bu,v) composes the
smoothness term, constraining the segmentation labels to be
both spatially and temporally consistent from a color based
consistency model. Ni is the spatial neighborhood of st,i
in frame ft, and temporal neighborhood of st,i in adjacent
frames ft−1 and ft+1.
Data Term. With a segmentation B for V , we estimate two
color Gaussian Mixture Models (GMMs) and two location
GMMs for the foregrounds and the backgrounds of V , respec-
tively. The corresponding data term Di(bt,i) based on color
and location GMMs in Eq. (5) is defined as

Di(bt,i) = − log
(
βU col

bt,i(st,i) + (1− β)U loc
bt,i(st,i)

)
, (6)

where β is a parameter controlling the contributions of color
U col
bt,i

and location U loc
bt,i

.
Smoothness Term. We exploit the standard contrast-dependent
function [22,23,24] to encourage spatially and temporally ad-
jacent superpixels with similar colors to be assigned with the
same label. In Eq. (5), Siv(bt,i, bu,v) is then defined as

Siv(bt,i, bu,v) = 1[bt,i 6=bu,v ]exp
(
−||ct,i − cu,v||22

)
, (7)

where characteristic function 1[bt,i 6=bu,v ] = 1 when bt,i 6=
bu,v , and 0 otherwise. bt,i and bu,v are the segmentation labels
of st,i and su,v , respectively. c is the color vector.
Optimization. With Di(bt,i) and Siv(bt,i, bu,v), we leverage
graph cut [25] to minimize the energy function in Eq. (5).

2.3. Iterative & Alternating Optimization

With an initial spatial segmentation Bo of video V using
saliency [18, 26], the overall optimization alternates between
the temporal action localization in Section 2.1 and spatial
action segmentation in Section 2.2. Upon the practical con-
vergence of this iterative process, the final results B are
obtained.

3. EXPERIMENTS AND DISCUSSIONS

We conduct experiments on multiple datasets to evaluate the
efficacy of the proposed Segment-tube detector, including
1) temporal action localization task on the THUMOS 2014
dataset [2], and 2) spatio-temporal action localization task on
the newly proposed ActSeg dataset. The average precision
(AP) and mean average precision (mAP) are employed to
evaluate the temporal action localization performance. If an
action is assigned the same category label with the ground
truth and simultaneously its predicted temporal range over-
laps the ground truth at a ratio above a predefined threshold
(e.g., 0.5), such temporal localization of an action is deemed
correct. The intersection-over-union (IoU) score is utilized to
evaluate the spatial action segmentation performance.
Temporal Localization on THUMOS 2014 dataset [2]. We
first evaluate the temporal action localization performance
on the THUMOS 2014 dataset [2], which is dedicated to
localizing actions in long untrimmed videos involving 20
actions. The training set contains 2755 trimmed videos and
1010 untrimmed validation videos. For testing, we use 213
videos that contain relevant action instances. Five exist-
ing temporal action localization methods, i.e., AMA [10],
FTAP [11], ASLM [12], SCNN [13], and ASMS [3], are
included as competing algorithms. AMA [10] combines iDT
features and frame-level CNN features to train a SVM clas-
sifier. FTAP [11] leverages high recall temporal action pro-
posals. ASLM [12] uses a length and language model based
on traditional motion features. SCNN [13] is an end-to-end
segment-based 3D ConvNets framework, including proposal,
classification and localization network. ASMS [3] localizes
actions by searching for the structured maximal sum. The
mAP comparisons are summarized in Table 1, which demon-
strates that the proposed Segment-tube evidently outperforms
competing algorithms with IoU being 0.3 and 0.5, and is
marginally inferior to SCNN [13] with IoU being 0.4.

Table 1: mAP comparisons on the THUMOS 2014 dataset.

IoU threshold 0.3 0.4 0.5
AMA [10] 14.6 12.1 8.5
FTAP [11] - - 13.5
ASLM [12] 20.0 23.2 15.2
SCNN [13] 36.3 28.7 19.0
ASMS [3] 36.5 27.8 17.8
Segment-tube 39.8 27.2 20.7



ActSeg dataset. To fully evaluate the spatio-temporal action
localization performance, the new ActSeg dataset is intro-
duced. It contains 446 untrimmed videos and 110 trimmed
videos of 9 categories in its training split, and 85 untrimmed
videos of 9 categories in its testing split. Both temporal anno-
tations and per-frame pixel-wise segmentation labels are in-
cluded as the ground-truth in all videos.
Mixed Dataset. To maximize the number of videos in each
category (see Fig. 3), a mixed dataset is constructed by com-
bining videos of identical action categories from multiple
datasets. The training split of the mixed dataset consists of
all 446 untrimmed videos and 110 trimmed videos in the pro-
posed ActSeg dataset, 791 trimmed videos from the UCF101
dataset [27], and 90 untrimmed videos from the THUMOS
2014 dataset [2]. The testing split of the mixed dataset con-
sists of all the 85 untrimmed videos from the testing split of
the proposed ActSeg dataset.
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Fig. 3: Histogram of the per-category AP on the testing split of the
mixed dataset. IoU threshold = 0.5.

Temporal Localization on Mixed Dataset. SCNN [13] and
ARCN [9] are used as competing temporal action localization
methods. All three methods are trained on the training split
of the mixed dataset. Fig. 3 and Table 2 summarize the per-
category AP and mAP, respectively. Our proposed Segment-
tube method achieves the best mAP, and it outperforms com-
peting methods in 4 out of 9 action categories.
Spatial Action Segmentation on ActSeg Dataset. The spa-
tial action segmentation task is implemented entirely on the
ActSeg dataset, with three competing video object segmenta-
tion methods, i.e., VOS [28], FOS [29] and BVS [30]. IoU
scores of the proposed Segment-tube method and the three
competing methods are summarized in Table 3, with a few
typical testing results visualized in Fig. 4. All predicted seg-
mentation masks are visualized as polygons with red edges.

The results in Table 3 demonstrate that the Segment-
tube method evidently outperforms VOS [28] and FOS [29],
and it is subtly better than the label propagation based BVS
method [30]. We speculate that severe occlusions (e.g., in

Table 2: mAP comparisons on the mixed dataset.

IoU threshold ARCN [9] SCNN [13] Segment-tube
0.5 17.2 18.4 21.2

the PoleVault and TripleJump categories) might lead to some
performance degradations in BVS [30].

We do not include performance comparisons on joint
spatio-temporal localization, because existing methods ei-
ther implement temporal action localization or spatial action
segmentation, but never achieve both simultaneously.

Table 3: IoU scores on the ActSeg dataset.

Video VOS [28] FOS [29] BVS [30] Segment-tube
ArabequeSpin 53.9 82.5 64.0 80.2
CleanAndJerk 20.1 50.0 85.9 84.9
UnevenBars 12.0 40.3 59.0 53.2
SoccerPenalty 54.4 38.5 59.8 51.4
PoleVault 38.9 41.2 42.6 46.9
TripleJump 30.6 36.1 33.5 55.7
NoHandWindmill 77.1 73.3 81.8 84.6
DeathSpirals 1 66.7 77.9 63.1
Throw 33.8 2 58.7 53.1
Average 35.8 47.8 62.6 63.7
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Fig. 4: Examples on the ActSeg dataset. Row 1 ∼ 4: VOS [28],
FOS [29], BVS [30] and our proposed Segment-tube detector.

4. CONCLUSION

The Segment-tube spatio-temporal action localization detec-
tor is proposed, which jointly localize the temporal bound-
aries and spatial per-frame segmentation masks in untrimmed
videos. With the proposed alternating iterative optimization
scheme, temporal localization and spatial segmentation could
be achieved simultaneously and evident performance gains
are observed on multiple datasets.
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