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Abstract—The lack of automatic tools to identify giant panda
makes it hard to keep track of and manage giant pandas in
wildlife conservation missions. In this paper, we introduce a
new Giant Panda Identification (GPID) task, which aims to
identify each individual panda based on an image. Though
related to the human re-identification and animal classification
problem, GPID is extraordinarily challenging due to subtle visual
differences between pandas and cluttered global information. In
this paper, we propose a new benchmark dataset iPanda-50 for
GPID. The iPanda-50 consists of 6, 874 images from 50 giant
panda individuals, and is collected from panda streaming videos.
We also introduce a new Feature-Fusion Network with Patch
Detector (FFN-PD) for GPID. The proposed FFN-PD exploits
the patch detector to detect discriminative local patches without
using any part annotations or extra location sub-networks, and
builds a hierarchical representation by fusing both global and
local features to enhance the inter-layer patch feature interactions.
Specifically, an attentional cross-channel pooling is embedded
in the proposed FFN-PD to improve the identify-specific patch
detectors. Experiments performed on the iPanda-50 datasets
demonstrate the proposed FFN-PD significantly outperforms
competing methods. Besides, experiments on other fine-grained
recognition datasets (i.e., CUB-200-2011, Stanford Cars, and
FGVC-Aircraft) demonstrate that the proposed FFN-PD outper-
forms existing state-of-the-art methods.

Index Terms—Giant panda identification, feature fusion, patch
detector, fine-grained recognition.

I. INTRODUCTION

AUTOMATIC identifying giant panda is an important
task in panda management and interpretation of images

captured by motion activated trail cameras in wildlife research.
However, the subtle differences between panda individuals
and the appearance variations due to posture/viewpoint make
it challenging to correctly identify each giant panda. Even
though some biometric trait-based methods (e.g., DNA-based
assessment [1]) or RFID (Radio Frequency Identification) tags
can help address such problem, these time-consuming data
collection procedures makes them expensive, inconvenient or
even impractical.

In this paper, we propose to address this problem with
computer vision techniques based purely on an input image.
We formulate the new Giant Panda Identification (GPID) task
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(a) Images of the same panda (named as “yingying”).
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(b) Images of different individual pandas.

Fig. 1. Examples from the proposed iPanda-50 dataset. (a) Images of the same
panda could exhibit dramatic appearance variations due to different illumination,
viewpoint, posture and occlusion conditions. (b) Images of different individual
pandas could have only subtle appearance differences.

and propose a new benchmark dataset iPanda-50 for GPID. We
assume an image database of giant pandas of known identities
are available and the unidentified giant panda belongs to one
of these identities. Thus, GPID is a closed-set identification
problem. While this paper focuses on identifying giant pandas,
we expect the technique could be extended to solve other
animal identification tasks.

Image-based giant panda identification is very challenging
due to large intra-identity variations and small inter-identity
distances. Image examples shown in Figure 1 illustrate the
challenges for the GPID task, i.e., images of the same panda
exhibit dramatic appearance variations caused by varying
illumination conditions, viewpoints, postures, and occlusions,
while images of different individual pandas could look very
similar to untrained human eyes.

Furthermore, as illustrated in Figure 2, GPID is distinct from
other visual identification tasks such as face recognition [2],
[3], [4], person re-identification [5], [6], [7] and fine-grained
recognition [8], [9], [10], [11], [12]. Compared with the face
recognition task, where the human face is a rigid object with
small local deformations, giant pandas in GPID exhibit postures
with huge difference, thus it is almost impossible to align the
the giant panda images before comparing their discriminative
features. Compared with the person re-identification task, the
giant panda is not only an articulated object having a large
degrees of freedom (thus various postures and occlusions) but
also lacks discriminative attributes like clothing, while the
pedestrains often show distinctive appearances, e.g., different
clothing, backpacks or hats. Specifically, GPID is highly related
to the fine-grained visual recognition (FGVR) [8], [9], [10],
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Fig. 2. Comparison between the giant panda identification task and similar
computer vision tasks. Four rows above show image examples from the
proposed iPanda-50 dataset for giant panda identification, the CUB-200-2011
dataset [13] for fine-grained visual recognition, the Market-1501 dataset [14]
for person re-identification, and the MS-Celeb-1M dataset [15] for face
identification, respectively.

[11], [12], where both aim to distinguish subtle differences
between visually similar entities, especially in their local parts.
However, the individual-level appearance differences in GPID
are arguably more challenging to detect than the category-
level differences in FGVR. Therefore, GPID is generally more
challenging than the aforementioned tasks.

Since the differences among inter-category images occur
on subtle parts, both GPID and FGVR should be capable of
identifying discriminative local regions and learning features
that capture their visual differences. However, most existing
FGVR methods conduct part localization and feature learning
independently. For instance, some part-based methods [16],
[17], [18], [19] train a part detection sub-network using
part annotations and extract features from each part region,
which are subsequently combined with the global feature for
recognition. Despite the promising results, they rely heavily
on manual part labeling, which could be time-consuming and
expensive. Worse still, the pre-defined parts may not necessarily
correspond to the most discriminative regions and thus result
in inferior recognition results.

Recently, some region-attention methods [20], [21], [22],
[23] introduce multi-attention modules as sub-networks to
learn the discriminative regions/features in a weakly-supervised
way and do not need manual part annotations. However,
such multi-stage methods rely on a complicated procedure of
network training, and sometimes accumulate errors and result
in degraded performance when prior stages focus on false
attention regions. Alternatively, end-to-end methods [24], [25]
require only image-level annotations. Some recent methods [26],
[27] implement end-to-end training based on bilinear pooling
frameworks, but most of them only use features from the last
convolutional layer, which might be suboptimal for fine-grained
recognition tasks.

To address the above challenges, we propose a Feature-

Fusion Network with Patch Detector (FFN-PD) for GPID. The
proposed FFN-PD does not rely on any location sub-networks
and can be simply trained end-to-end without additional part
annotations. Inspired by [28], we adopt an asymmetric multi-
stream structure to capture both local and global features,
and employ 1× 1 convolution filters (i.e., patch detectors) to
automatically detect most discriminative local patches, which
could be the key to identify giant pandas. Thanks to this
design, the proposed method does not require additional part
annotations, and the local patches of each giant panda are self-
excavated by the network. In this way, we avoid fixed types of
parts and these learned parts are not artificially constrained to
be shared among different pandas. Furthermore, we propose
a novel fusion stream to fuse global and local features,
and generate a hierarchical representation. This mid-level
representation embodies inter-layer patch feature interactions
and allows the network to further focus on more commonly
discriminative patch features. To facilitate the learning of
identity-specific patch detectors, we further introduce a novel
attentional cross-channel pooling to achieve convolution filter
supervision.

To sum up, the key contributions of this paper are as follows:

• To the best of our knowledge, this is the first work address-
ing the important yet challenging task of Giant Panda Iden-
tification (GPID) in images. We build a new benchmark
dataset called iPanda-50, which exhibits extreme similarity
between different individual-level pandas (small inter-
identity distances) and dramatic variations of appearances,
illuminations, viewpoints, postures, and occlusions within
each identity (large intra-identity variations).

• We propose a novel Feature-Fusion Network with Patch
Detector (FFN-PD) for GPID with several technical
innovations. First, we embed patch detectors across layers
to generate more significant representations for local parts.
Second, we apply a new hierarchical representation to
capture inter-layer patch feature interactions. Third, a new
attentional cross-channel pooling serves as the convolution
filter supervision to enhance class-specific patch detectors.
The proposed FFN-PD can be trained end-to-end and does
not require any extra part annotations.

• We evaluate the proposed FFN-PD on the challenging
iPanda-50 dataset as well as other fine-grained recognition
datasets. The results show the proposed FFN-PD achieves
a significant performance advantage against competing
methods on the iPanda-50 dataset, and also achieve state-
of-the-art performance on other fine-grained recognition
datasets (i.e., CUB-200-2011, Stanford Cars, and FGVC-
Aircraft). Besides, extensive ablation studies are carried
out to validate the contribution of each component.

• We find that covering the eyes of pandas via Gaussian blur
will significantly degrade the identification performance.
This indicates that the panda’s eyes play a critical role in
panda identification.

This paper extends our previous conference paper [29] in
four aspects. (1) More comprehensive review is included in
Section II. (2) More details on problem formulation and
implementation details are provided. (3) We augment the



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XXX, NO. XXX, XX XXXX 3

panda dataset and add extra annotations of the locations of
pandas’ eyes, which we found to be a critical factor for panda
identification. (4) We include more experimental details and
more competitive methods for comparison.

The rest of the paper is organized as follows. In Section II
we review related work. In Section III we present the details
of the proposed Feature-Fusion Network with Patch Detector.
In Section IV, we introduce the new benchmark iPanda-50. In
Section V, we introduce implementation details, along with
detailed evaluation results and discussions. Finally, we conclude
the paper in Section VI.

II. RELATED WORK

In this section, we briefly review related work on fine-grained
visual recognition, discriminative region excavation, feature
fusion and multi-scale feature representation.

A. Fine-grained Visual Recognition

Popular Fine-grained Visual Recognition (FGVR) tasks [30],
[31], [32], [33] often involve the classification of sub-
species/breeds, where appearance variances among different
categories differ only in slight parts. Profited by the evolvement
of deep Convolutional Neural Networks (CNN), FGVR has
transitioned from the strongly-supervised way [13], [17], [16],
[18] to the weakly-supervised manner [20], [34], [35], [10]
in the past few years. For strongly-supervised methods [17],
[19], they generally utilize localization networks to locate
discriminative part regions with part labels, and conduct “hard”
crop operation on these regions to further extract region features.
Despite their efficacy, their heavy reliance on part annotations
restricts practical applications.

Recently, the attention mechanism introduced in several
part annotation-free methods [20], [35] have been developed.
Fu et al. [20] propose a recurrent attention CNN, which
recursively learns discriminative region attention and region-
based feature representation at multiple scales in an alternating
optimization scheme. However, the alternate training of multiple
sub-networks needs to be adjusted manually, which could limit
their practicality. Sun et al. [35] employ a one-squeeze multi-
excitation module to obtain multiple attention region features of
each input image and then utilize a metric learning framework
with a multi-attention multi-class constraint, but this work
contains a non-trivial sample selection procedure.

Alternatively, to achieve the ease of training in an end-to-end
manner, some neural network designs resort to the bilinear
pooling [36] and its variants [24], [27]. However, most of them
only exploit feature representation from the last convolutional
layer, which are typically too coarse for fine-grained tasks
and incur high computational cost due to the typical large
depth/channel dimension.

The most relevant work to ours is DFL-CNN [28] as it
also leverages patch detectors to discover the discriminative
local patches. However, our work differs from [28] in three
main ways. (1) DFL-CNN simply embeds patch detectors
after multiple convolutional layers to achieve multi-scale patch
learning, while we extend patch detectors in another layer to
construct a fusion stream, which makes the network further

focus on high-response discriminative local patches. As a result,
our network promotes the interaction of local patches across
layers while [28] neglects such interaction. (2) We introduce a
new filter supervision (i.e., attentional cross-channel pooling)
to respond reasonably to the roles of different local patches,
and it works better than the mediocre cross-channel pooling
in [28]. (3) We discard the complicated method of non-random
initialization which is designed to avoid bad local minima
while learning the patch detectors in [28].

B. Discriminative Region Excavation

Due to differences of small object parts, discriminative
region excavation plays an important role for fine-grained
object recognition. A straightforward way to represent parts is
to find where the discriminative regions are with location
networks. One prior work [37] uses a volumetric poselet
scheme to establish bird pose-normalized part appearance.
Another work [38] trains two deformable part descriptors
with object part annotations to localize the semantic parts.
Furthermore, some methods locate object parts with key
part point labels to regress region bounding boxes by fully
convolutional network [17], [16] or Mask-CNN [19]. With
image-level supervision, recent methods [20], [21], [23] learn
discriminative region features by generating region attention
maps in a multi-stage optimal manner. For example, Zhang
et al. [23] learn multiple experts focused on the diversity of
regions by combining a gradually-enhanced learning strategy.
Ding et al. [39] collect local maximums to estimate informative
regions and learn a set of sparse attention for capturing fine-
detailed visual evidence.

In contrast, our design is an end-to-end network, which
automatically learns discriminative regions without any expen-
sive bounding box/part annotations or complex location sub-
networks. We design our method so that it directly optimizes
local region search with the patch-level classification loss.

C. Feature Fusion

CNNs have also become popular for instance-level classifi-
cation, but the feature map out of a single convolution layer
is often insufficient to distinguish subtle differences among
very similar objects or categories, e.g., feline/canine/avian
subspecies. Recently, efforts of combining feature maps from
multiple convolution layers have been proposed [40], [41].
Long et al. [42] combine coarse features and fine features
from different convolution layers for image segmentation.
Hariharan et al. [43] present a hyper-column representation
for object segmentation and fine-grained localization, which
concatenates pixel-level activations from all CNN units. Cai
et al. [27] concatenate multiple feature maps from different
layers to exploit the intra-layer and inter-layer interactions.
More recently, Yu et al. [25] claim that hierarchical bilinear
pooling could enhance both inter-layer patch feature interaction
and fine-grained feature representation.

D. Multi-scale Feature Representation

In order to further improve the performance, many CNNs
of computer visual tasks have exploited multi-scale features.
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Fig. 3. An overview of the proposed Feature-Fusion Network with Patch Detector, which consists of a global stream (G-Stream), a local stream (L-Stream) and
a fusion stream (F-Stream) to exploit global information, patch-level information and hierarchical information, respectively. Besides, an attentional convolution
filter supervision is proposed to facilitate identity-specific discriminative patch learning.

Some methods [44], [42] concatenate feature vectors inferred
from multiple layers and obtain the final result to include
informative features of low-level spatial resolution and high-
level semantic properties. Besides, Lin et al. [45] propose a
Feature Pyramid Network (FPN) to build high-level semantic
feature maps at all scales by a top-down architecture with
lateral connections. Wang et al. [46] use a multiple granularity
framework to encode informative and discriminative features
covering all the grain levels. More recently, the deep layer
aggregation structure studied in [47] produces better accuracy
by iteratively and hierarchically merging the feature hierarchy.

In this paper, we perform multi-scale feature representation
by independently computing four various losses, where each
one accounts for a meaningful semantic representation, and
they jointly contribute to the final classification.

III. FEATURE-FUSION NETWORK WITH PATCH DETECTOR

In this section, we first formulate the task of Giant Panda
Identification (GPID), then describe the framework of the
proposed Feature-Fusion Network with Patch Detector (FFN-
PD) in detail, and finally present the network training and
testing process. As described in Section I, it is necessary to
exploit both global and fine-grained discriminative information
to identify pandas. To this end, the proposed FFN-PD adopts an
asymmetric multi-stream structure. As illustrated in Figure 3,
the proposed FFN-PD consists of a global stream to learn
global features, a local stream with patch detectors to learn
local discriminative features, and a fusion stream to learn
hierarchical representation. Besides, a novel attentional cross-
channel pooling is employed to force identity-specific patch
features learning.

A. Problem Formulation

The training set contains a set of training tuples, where each
tuple (X,y) consists of one RGB giant panda image X ∈
R3×H×W and its corresponding ground truth label y ∈ RN ,
where H and W respectively indicate the height and width of

the image, y is a one-hot label vector, and N is the number
of panda individuals. The goal of GPID is to correctly map
the testing giant panda image to its label vector.

B. Global Stream

Similar to generic image classification methods, the global
stream (i.e., G-Stream) consists of a feature-extraction backbone
(e.g., ResNet50 [48]) for image feature extraction, and a
fully-connected classification layer with softmax to output
the classification prediction ŷglobal.

However, using the G-Stream alone is far from enough
to clearly distinguish panda identities, as panda identities
exhibit very similar global patterns. Therefore, we introduce
the following local stream to identify pandas in a fine-grained
level.

C. Local Stream

The appearance differences among panda individuals usually
occur at subtle parts, which are crucial for panda identification.
To this end, we propose a local stream (i.e., L-Stream) to
capture the local discriminative information. Naturally, early
layers of a feature-extraction backbone have smaller receptive
field than its deep counterpart, thus early layers are able to
detect more fine-grained information [45]. Therefore, the L-
Stream takes as input an intermediate feature map from the
feature-extraction backbone (e.g., feature map at the layer3 of
ResNet50 [48]).

Denote the intermediate feature map is of size C ′ ×Hl ×
Wl, where C ′ is the number of channels, Hl and Wl are
respectively the height and width of the feature map. The
feature map can be further interpreted as Hl×Wl patch vectors
of size C ′×1×1, where each patch vector represents the local
feature within its receptive field. Inspired by [28], we exploit
1 × 1 convolutional filters as patch detectors to detect local
patches so that high responses represent subtle discriminative
characteristics of a panda identity. Thanks to this design, the
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Fig. 4. An overview of the patch detector. A patch detector finds discriminative
local patches with patch-level information, which is the L-stream in Figure 3.

learned patch detectors will not be limited to manually pre-
defined locations, thus free us from additional manual location
annotations. As shown in Figure 4, C patch detectors are used
to learn the most discriminative image patches. The output
feature map is filterd with a global max pooling (GMP) to
keep the most discriminative features, and passed through a
fully-connected softmax layer to get the local stream prediction
result ŷlocal.

D. Fusion Stream

Despite using patch detectors in the L-Stream, as illustrated
in Figure 3, we further embed patch detectors into the G-
Stream to exploit various semantic patches in feature maps with
different receptive fields. To guide the network to emphasize
more on high-response patches, we introduce a fusion stream
(i.e., F-Stream) to fuse local and global features via element-
wise multiplication. These inter-layer patch interactions can
further activate common high-response regions and produce
a local-global hierarchical representation. Figure 5 shows an
overview of the F-Stream.

After passing deep feature maps through patch detectors of
the L-Stream and G-Stream, we obtain the local and global
filtered feature maps Ml ∈ RC×Hl×Wl and Mg ∈ RC×Hg×Wg

respectively, where Cg , Hg , and Wg are the number of output
channels, height and width of the global filtered feature map,
respectively. Typically, Hl > Hg and Wl > Wg, because the
size of feature map generally decreases as the depth of layers
increases. An additional average pooling layer is included to
reduce the spatial dimension of the local filtered feature map
and match the size of global filtered feature map, such that
M̄l = AvgPool(Ml) ∈ RC×Hg×Wg . Subsequently, the feature
fusion is implemented via element-wise multiplication:

Mf = Mg � M̄l, (1)

where � denotes the element-wise multiplication and Mf ∈
RC×Hg×Wg . As shown in Figure 5, the L-Stream may falsely
exploit background noise as discriminative patches, while the
G-Stream can only detect coarse regions. With the proposed
element-wise multiplication fusion method, the hierarchical
representation can guide the network to focus on the commonly
interesting regions across layers, which could effectively
promote identification accuracy. Then, global average pooling
is implemented on the fusion feature map to reduce the spatial
dimension: mf = GlobalAvgPool(Mf ) ∈ RC . Finally, `2

averaginglocal filtered feature

global filtered feature

fusion feature

FC

hierarchical  
representation

: fusion

avg pool

norm

Fig. 5. An overview of the fusion stream. The feature fusion process fuses local
filtered features and global filtered features via element-wise multiplication
and results in a hierarchical representation. The learned heat maps of each
feature map are illustrated.

normalization is carried out to obtain the final hierarchical
representation:

m̄f =
mf

||mf ||2
, (2)

where || · ||2 denotes the `2 norm. m̄f is subsequently fed
into a fully-connected layer with softmax to get the fusion
prediction ŷfusion.

E. Attentional Convolution Filter Supervision

As illustrated in Figure 5, the fully-connected layer used
to compute ŷlocal inevitably mixes all discriminative patches
together. Moreover, there is no guarantee that the 1× 1 con-
volutional filters (designated as patch detectors) will focus on
specific discriminative patches of a certain identity. Therefore,
an additional supervision is needed to encourage patch detectors
to emphasize on identity-specific discriminative patches. To this
end, as illustrated in Figure 6, we propose a novel attentional
cross-channel pooling module to address the aforementioned
problem.

Specifically, let the number of patch detectors be C = k ·N ,
where k is a pre-defined hyperparameter indicating the top-
k most discriminative local patches for each identity. Given
local and global filtered feature maps Ml and Mg, we first
use global max pooling to obtain two (k · N)-dimensional
feature vectors vl and vg ∈ Rk·N , respectively. As mentioned
above, each identity is assigned with k patch detectors to
detect its discriminative features, thus the k values in the
feature vectors are expected to have high activations, while
others are expected to have low activations. Therefore, we
propose to directly generate identification predictions from the
feature vectors. Specifically, we first combine vg and vl via
element-wise addition as v = vl + vg . Then, for convenience,
we reshape the (k ·N)-dimensional feature vector as a matrix
V = [v1, · · · ,vN ] ∈ Rk×N .

In [28], this combined V is simply average-pooled to
generate a N -dimensional vector a ∈ RN for identification
prediction:

a =
1

k
VT1k×1, (3)

where 1k×1 denotes an all-one vector of size k × 1.
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Fig. 6. An overview of the proposed attentional cross-channel pooling. The
local and global filtered feature vectors are weighted sumed via an attention
weight matrix W, and generate a filter identification prediction. This figure
provides details of the “filter supervision → ŷfilter” green rectangle in Figure 3.

However, such simple averaging strategies are reported to
induce balanced responses in these k patches during back-
propagation [49]. Besides, the k discriminative features may not
necessarily appear in each image due to different panda poses.
Therefore, we concern that the simple averaging in Eq. (3)
might assign equal weights to patches with different semantic
significance and falsely detect irrelevant patches, thus adversely
affect the performance. To address this problem, we propose
a new attention mechanism, which automatically learns the
weights assigned to the k local patches. Specifically, let W =
[w1, · · · ,wN ] ∈ Rk×N denote the attention weights, with
each column wi = [wi,1, · · · , wi,k]

T ∈ Rk, i = 1, · · · , N . All
elements in W are initialized to 1/k and automatically updated
during the training process via back-propagation. Then, we
weighted sum the feature matrix V via the attention weights W,
and generate the filter prediction ŷfilter via class-wise softmax:

ŷfilter = softmax
(

(V �W)
T
1k×1

)
, (4)

where softmax(·) denotes a class-wise softmax.

F. Network Training and Testing

By exploiting information from different streams, we obtain
different semantic identification predictions from features with
different receptive fields. Specifically, three predictions ŷglobal,
ŷlocal, and ŷfusion are obtained from the global stream, the
local stream, and the fusion stream, respectively. Besides,
an additional filter supervision prediction ŷfilter is obtained
directly from the feature vectors. During training, the four
predictions are supervised by the standard cross entropy loss,
and a weighted sum of the four losses forms the total loss L:

L =
∑
i⊂P
Lce(ŷi,y) + λLce(ŷfilter,y), (5)

where P = {global, local, fusion}, Lce is the standard cross
entropy loss, and λ is a weight parameter.

During testing, we also use a weighted average to generate
the final prediction ŷ:

ŷ =

∑
i∈P ŷi + λŷfilter

3 + λ
. (6)

Fig. 7. Sample images and statistics of all the panda identities from the
iPanda-50 dataset. Statistics are formatted as identity, #images(#training-
images/#testing-images).

IV. THE IPANDA-50 DATASET

We present a new iPanda-50 dataset for the giant panda
identification task. We first collect giant panda streaming videos
from the Panda Channel1, which contains daily routine videos
of pandas at different ages (cubs, juveniles, and adults). The
identity annotations are provided by professional zookeepers
and breeders. To extract panda images from videos, we
compute the similarities between adjacent video frames with
the structural similarity index measure (SSIM) [50], which is
defined as

SSIMx,y =
1

M

N∑
i=1

(2µxiµyi + c1) (2σxiyi + c2)(
µ2
xi

+ µ2
yi

+ c1
) (
σ2
xi

+ σ2
yi

+ c2
) , (7)

where µxi , µyi are the averages of the ith pair of patches in
the images x, y respectively, σx, σy are their variances, σxy is
their covariance, and M is the total number of image patches.
c1 and c2 are constants to prevent the denominator of Eq. (7)
from being zero. In this way, only key frames that are different
from their previous ones are retained.

We further manually select images with various illuminations,
viewpoints, postures, and occlusions. In addition, we manually
crop out each individual panda with a tight bounding box of
varying aspect ratios. The iPanda-50 dataset consists of 6, 874

1Video streaming website, http://www.ipanda.com.

http://www.ipanda.com
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images of 50 giant panda identities with 49 ∼ 292 images per
panda identity. The split ratio of the training set and testing set
is 2:1. Some sample images and statistics of this dataset are
shown in Figure 7. This iPanda-50 dataset is available online2,
and we are further expanding the dataset.

V. EXPERIMENTS AND DISCUSSIONS

This section contains four parts. First, we introduce the
implementation details of the proposed Feature-Fusion Net-
work with Patch Detector (FFN-PD). Second, we evaluate
the proposed method on the challenging iPanda-50 dataset.
Third, we apply our method to conventional fine-grained
visual recognition (FGVR) datasets, i.e., CUB-200-2011 [13],
Stanford Cars [32], and FGVC-Aircraft [51], which are most
related to our task. Finally, we demonstrate ablation studies
to prove the contribution of each component in the proposed
FFN-PD.

A. Implementation Details

The proposed FFN-PD is implemented via PyTorch [52] and
trained with 4 NVIDIA 1080Ti GPUs. We apply ImageNet [53]
pre-trained ResNet50 [48] as the backbone in our experiments,
and extract feature map at the layer3 for local stream. It is
worth noting that our backbone is not tied to any specific
networks. The regular stochastic gradient descent optimizer is
used with a momentum of 0.9, a weight decay of 5×10−4, and
a batch size of 32. The initial learning rates are 0.01 and 0.1 for
the pre-trained layers and the newly added layers, respectively.
The learning rates are decayed by a factor of 0.1 every 20
epochs. The number of the most discriminative patches per
identity, i.e., k, is empirically fixed to 10. Both the kernel size
and the stride of the average pooling in the F-stream are 2.
The weight parameter λ is set to 0.1 according to grid search.

As mentioned in previous sections, the receptive field of the
deep layer is too large to locate object parts. To tackle this
issue, we zoom in the input image, and thus the receptive fields
of the subtle parts become larger compared to the original
image at the same convolution layers. Specifically, for the
giant panda identification task, all input images are resized
to 448× 448 regardless of aspect ratios, and augmented with
random horizontal flipping during training, while they are only
resized during testing. The FGVR settings on the CUB-200-
2011, Stanford Cars, and FGVC-Aircraft datasets are highly
similar, except that (1) all images are resized so that the shorter
edge is 448 pixels wide (keeping aspect ratio unchanged),
(2) training images are randomly cropped so that their sizes
are 448 × 448, and (3) testing images are cropped at the
center so that their sizes are 448× 448. We use the multi-class
classification accuracy as the evaluation metric.

B. Evaluation on the iPanda-50 Dataset

The performance comparison between the proposed FFN-
PD and competing methods on the iPanda-50 dataset is
summarized in Table I. All statistics in Table I are obtained
with 5 independent random training/testing splits (4, 106 and

2https://github.com/iPandaDateset/iPanda-50

TABLE I
PERFORMANCE COMPARISON ON THE IPANDA-50 DATASET VIA 5 RANDOM

TRIALS. THE MAXIMUM, MEAN, AND STANDARD DEVIATION OF THE
ACCURACY ARE REPORTED AS MAX., MEAN, AND δ, RESPECTIVELY.

P-VALUES AND ALTERNATIVE HYPOTHESIS H1 CONFIDENCE IN A SERIES
OF ONE-TAILED STUDENT’S T-TESTS (WITH NULL HYPOTHESIS H0 BEING
THERE IS NO EFFECTIVE ADVANTAGE OF THE PROPOSED FFN-PD OVER

OTHERS) ARE REPORTED AS P-VALUE AND CONF., RESPECTIVELY.

Method Max. (%) Mean (%) δ P-value Conf.

Baseline 76.3 75.7 0.70 2.0e-6 >99%
MFC 80.8 79.9 1.00 1.2e-4 >99%
HBP [25] 78.4 77.8 0.48 4.1e-7 >99%
B-CNN [36] 77.3 76.9 0.30 1.3e-9 >99%
DFL-CNN [28] 84.8 84.1 0.49 2.0e-4 >99%
FFN-PD (ours) 86.3 86.1 0.16 - -

New page 19

00_v138_f002745_BS2015

wuyi
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05_v077_f005970_CN2015

qiyuan
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Fig. 8. The Grad-CAM [54] visualization of the feature maps of different
panda identities at the end of the local L-Stream branch. The first column
is the original images, the second column is the feature visualization before
training, the third column shows the active regions after training, and the last
column shows the top-3 patches remapped onto the original image.

2, 768 images in training and testing splits, respectively). The
maximum (Max.), mean (Mean), and standard deviation (δ) of
the accuracy (%) over these 5 trials are reported. Additionally,
to account for coincidental fluctuations and reveal statistical
significance, a series of 5 one-tailed student’s t-tests are carried
out. The null hypothesis H0 is there is no obvious advantage
of the proposed FFN-PD over other competing methods. P-
values and the confidence intervals (Conf.) of the alternative
hypothesis H1 being true are also reported for each competing
methods. As presented in Section III, the “Baseline” in Table I
denotes a generic classification network with a single G-Stream
branch.

We also implement a multi-feature concatenation (“MFC”
in Table I) method, which directly concatenates features
from multiple convolution layers (i.e., layer3 and layer4 of
ResNet50). It outperforms the baseline, indicating the value of
incorporating cross-layer features.

https://github.com/iPandaDateset/iPanda-50
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aibang baolan hexing maodou nina

Fig. 9. The visualization of covering different regions of the giant panda
with Gaussian blur. We cover the giant panda’ eyes on the image as shown in
the first row, and randomly cover other regions except the eyes shown in the
second row.

TABLE II
PERFORMANCE COMPARISON BETWEEN COVERING PANDA EYES AND

RANDOMLY COVER OTHER REGIONS ON THE IPANDA-50 DATASET.

iPanda-50 cover eyes randomly cover other parts
r1 r2 r3 r4 r5 Mean.

86.3 % 82.2 84.4 84.6 84.0 84.9 84.7 84.5

More importantly, we re-implement three FGVR methods,
i.e., (1) a classical bilinear pooling method BCNN [36], (2)
a hierarchical bilinear pooling framework HBP [25], which
concatenates multiple cross-layer bilinear features, (3) DFL-
CNN [28], which learns a mid-level representation to capture
identity-specific discriminative patches. The proposed FFN-PD
outperforms all these competing ones with confidence intervals
of > 99%.

Figure 8 provides Grad-CAM [54] visualizations of the local
filtered features for four different identities. The second column
in Figure 8 is the feature visualization before training, and it
shows that the high activations are scattered all over the image,
and most of the patches with high response are located on the
background instead of the target panda.

After training, such discriminative patches focus on the
pandas, especially on their faces, as shown in the third
column of Figure 8. Besides, for different panda identities,
the patches may also focus on different locations (e.g., eyes of
“wuyi”, nose of “sa”, back of “qiyuan”, and ears of “susu”),
which demonstrates patch detectors can detect identity-specific
discriminative parts. We further remap the local patches with
the top-3 activations back to the original image in the fourth
column. We are surprised that these visualizations agree well
with [55], which claims that such black eye patches may help
pandas recognize one another.

In order to verify the aforementioned conjecture that the
features around the eye regions of the giant panda may promote
the accuracy of panda identification, we further perform the
following experiments. We use Gaussian blur to cover the
panda eyes in the iPanda-50 dataset (as shown in the first
row of Figure 9). Since occlusion based on Gaussian blur
also brings noise, it is difficult to directly judge whether the
factor affecting the accuracy is the Gaussian blur itself or the
occlusion of the panda’s eyes. Therefore, we also use Gaussian
blur occlusion on other regions besides eyes (as shown in the
second row of Figure 9), and the number of Gaussian blur

yayisa xingxiaobaolan shuqing

Fig. 10. Failure cases of the proposed FFN-PD due to the bad illumination
condition and the back posture that does not show obvious discriminative
characteristics.

occlusions is set to the same as the number of eyes exposed in
the image (due to panda’s pose, some image may show one eye
or two eyes). In addition, random occlusion also brings random
errors. The best way to eliminate random errors is to repeat the
similar process and use the mean to offset the random errors.
Therefore, we randomly conduct five independent Gaussian
blur occlusions on other regions. Finally, we evaluate with our
proposed algorithm on the iPanda-50 dataset after Gaussian
blur processing.

The results are summarized in Table II. We obtain an
accuracy of 82.2% on the same iPanda-50 dataset split by only
covering the giant panda’s eyes, which is 4.1% lower than
86.3% without any cover processing. Meanwhile, the mean
accuracy of the five independent random occlusions is 84.5%,
which slightly degrades the performance. It indicates that
Gaussian blur does partly reduce the identification performance,
but the impact it brings is far worse when covering the eyes.
We believe that the features around eyes could affect panda
identification. The experimental results indicate that our method
can well learn the features around the eyes without any part-
level supervision. It further illustrates the effectiveness and
feasibility of the proposed method.

Figure 10 shows failure cases with the proposed FFN-PD.
Specifically, we speculate that the back view of giant pandas
“sa” and “yayi” and the poor illumination of the giant panda
“xingxiao” account for such identification failures.

Additionally, a closer look reveals that a small portion of the
learned discriminative image regions are unfortunately related
to background objects, which indicates the network might rely
on panda’s background/habitat to distinguish their identities.
We speculate that this phenomenon results from the limited
dataset size and diversity.

C. Evaluation on other FGVR Datasets

FGVR Datasets. To further demonstrate the effectiveness
of the proposed method, we conduct experiments on three
FGVR datasets (i.e., CUB-200-2011 [13], Stanford Cars [32],
and FGVC-Aircraft [51]).

• CUB-200-2011 [13] is an avian species classification
dataset which contains 11, 788 images of 200 categories.
The ratio of training images and test images is about 1 : 1.
We use the publicly available split [31] in our experiments.
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• Stanford Cars [32] contains 16,185 images of 196 car
categories with a roughly 50%−50% split of each category.
The car images of this dataset usually show various
angles and sizes, and the categories are typically divided
according to the production year and car model.

• FGVC-Aircraft [51] contains 10,000 images of 100
categories. The ratio of training and testing images is
2 : 1. The airplane images of this dataset are assigned
in four levels from finer to coarser, i.e., Model, Variant,
Family, and Manufacturer.

Baselines. We compare the proposed FFN-PD with 15
existing state-of-the-art FGVR methods, including four part-
based methods [17], [16], [18], [19] with bounding box/part
annotations, four region-attention methods [20], [21], [35], [23]
using attention maps with image-level labels, and seven end-to-
end (i.e., one-stage) methods [36], [56], [24], [57], [25], [28],
[11] with image-level labels. All baselines are listed as follows.

• Part-RCNN [17]: a part-based model that extends R-
CNN [58] to extract features based on bottom-up region
proposals with part annotations.

• DeepLAC [16]: a deep location, alignment, and classifi-
cation architecture that forms a valve linkage function for
simple back-propagation and recognizes in pose-aligned
part images.

• PS-CNN [18]: a part-stacked CNN architecture that
performs object part localization with a fully convolutional
network and simultaneously encodes object-level and part-
level features.

• Mask-CNN [19]: a mask-CNN model that contains a
fully convolutional network to learn the discriminative
part masks and uses these masks to select deep descriptors.

• RA-CNN [20]: a recurrent attention CNN that begins
with whole images and combines the previous result to
iteratively generate region areas from coarse to fine stages.

• MA-CNN [21]: a multi-attention CNN that clusters the
spatially-correlated channels to generate multiple parts
and learns fine-grained features based on these parts in a
mutual reinforced way.

• MAMC [35]: a multi-attention multi-class constraint
method that learns attention maps in the one-squeeze
multi-excitation module and then regularizes features in a
metric learning manner.

• MGE-CNN [23]: a mixture of granularity-specific experts
approach that learns experts with former experts to focus
on finer regions and guides each expert to produce diverse
prediction distribution via a Kullback-Leibler constraint.

• B-CNN [36]: a bilinear CNN model that extracts pairwise
feature interactions for fine-grained recognition in an end-
to-end training.

• Compact B-CNN [56]: a compact bilinear CNN that
reduces feature dimensions with the same discriminative
power compared with B-CNN [36].

• Kernel-Pooling [24]: a kernel pooling method that uses
the form of kernels to capture higher order feature
interactions for fine-grained recognition.

• Low-rank B-CNN [57]: a low-rank bilinear pooling
method that proposes the covariance feature representation

TABLE III
PERFORMANCE COMPARISON BETWEEN THE PROPOSED FFN-PD AND 15
EXITING FGVR METHODS ON THE CUB-200-2011 DATASET. THE FIRST

GROUP USES LOCATION SUB-NETWORK WITH BOUNDING BOX/PART
ANNOTATIONS. THE SECOND GROUP LEVERAGES REGION ATTENTION MAPS

WITH ONLY IMAGE-LEVEL LABELS. THE THIRD GROUP PERFORMS IN AN
END-TO-END MANNER (i.e., ONE-STAGE) WITH IMAGE-LEVEL LABELS.

Method Backbone BBox/Parts 1-Stage Accuracy

Part-RCNN [17] AlexNet X 76.4
DeepLAC [16] AlexNet X 80.3
PS-CNN [18] AlexNet X 76.6

Mask-CNN [19] ResNet-50 X 87.3
B-CNN [36] VGG-16 X X 85.1

RA-CNN [20] VGG-19 85.3
MA-CNN [21] VGG-19 X 86.5
MAMC [35] ResNet-50 X 86.5

MGE-CNN [23] ResNet-50 88.5

B-CNN [36] VGG-16 X 84.1
Compact B-CNN [56] VGG-16 X 84.0
Kernel-Pooling [24] VGG-16 X 86.2

Low-rank B-CNN [57] VGG-16 X 84.2
HBP [25] VGG-16 X 87.1

DFL-CNN [28] ResNet-50 X 87.4
DCL [11] ResNet-50 X 87.8

FFN-PD (ours) ResNet-50 X 88.6

with a low-rank bilinear classifier to reduce compute time.
• HBP [25]: a hierarchical bilinear pooling approach that

captures the inter-layer part feature relations and integrates
multiple cross-layer bilinear features.

• DFL-CNN [28]: a discriminative filter bank model that
exploits mid-level representation and learns identity-
specific patches by the filter bank.

• DCL [11]: a destruction and construction learning model
that enhances the difficulty of recognition by destructing
images and then reconstructs images to learn fine-grained
features.

Results on the CUB-Birds dataset. We first conduct the
experiment on the CUB-200-2011 dataset, which not only
provides the class label but also provides additional bird part
annotations including beak, eyes, nape, wing, and tail etc. We
compare the proposed FFN-PD with 15 exiting FGVR methods
on this dataset, and the detailed discussion is as below.

Of the 15 competing FGVR methods, Part-CNN [17],
DeepLAC [16], PS-CNN [18], and Mask-CNN [19] learn
fine-grained features based on various parts by using location
networks to locate object parts with additional part annotations.
Specifically, the located parts should be shared across cate-
gories, which means such part representations are similar, but
the later fine-grained learning encourages these subtle parts
to be different. Thus, it should balance the localization and
classification networks, which is hard to achieve in practice. B-
CNN [36] performs classification via high-dimensional feature
representation with supplementary object bounding boxes. Due
to their privileged access with additional bounding box/part
annotations, their performances are not fairly comparable with
others. Nevertheless, our method surpasses these methods with
12.2%, 8.3%, 12.0%, 1.3%, and 3.5% relative accuracy gains,
respectively.

RA-CNN [20], MA-CNN [21], MAMC [35] and MGE-
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TABLE IV
PERFORMANCE COMPARISON BETWEEN THE PROPOSED FFN-PD AND 10
EXITING FGVR METHODS ON THE STANFORD CARS DATASET. THE FIRST
GROUP LEVERAGES REGION ATTENTION MAPS WITH ONLY IMAGE-LEVEL

LABELS. THE SECOND GROUP PERFORMS IN AN END-TO-END MANNER (i.e.,
ONE-STAGE) WITH IMAGE-LEVEL LABELS.

Method Backbone 1-Stage Accuracy

RA-CNN [20] VGG-19 92.5
MA-CNN [21] VGG-19 X 92.8
MAMC [35] ResNet-50 X 93.0

MGE-CNN [23] ResNet-50 93.9

B-CNN [36] VGG-16 X 91.3
Kernel-Pooling [24] VGG-16 X 92.4

Low-rank B-CNN [57] VGG-16 X 90.9
HBP [25] VGG-16 X 93.7

DFL-CNN [28] ResNet-50 X 93.1
DCL [11] ResNet-50 X 94.5

FFN-PD (ours) ResNet-50 X 94.7

CNN [23] rely on attention maps to facilitate the fine-grained
feature learning with only image-level labels. However, such
methods almost require additional architectures such as the
attention network to locate discriminative parts or encode region
features, which leads to more computation both in training and
testing. For example, MA-CNN [21] consists of the convolution,
channel grouping, and part classification sub-networks, which
requires alternative optimization of each sub-network. The most
recent method MGE-CNN [23] achieves a high classification
accuracy that is closest to ours on this dataset. But it iteratively
generates region-specific experts in multiple stages, which will
be in an extreme predicament when the previous stage focuses
on error attention regions.

Recent methods that can be trained end-to-end (i.e., one-
stage) are also included, such as B-CNN [36], Compact B-
CNN [56], Low-rank B-CNN [57], and Kernel-Pooling [24],
which typically exploit very high-dimensional features com-
pared to the other two groups. For instance, Kernel-Pooling [24]
encodes higher order interaction representation for fine-grained
feature learning, but its dimension is still too large. Here
the weakly-supervised B-CNN [36] is reported only with
image-level labels, whose accuracy (84.1%) is lower than
the counterpart with bounding box annotations (85.1%). In
addition, DCL [11] proposes a “Destruction and Construction
Learning” method to increase recognition difficulty and make
the network learn expert knowledge, however, its training
process is complicated. HBP [25] and DFL-CNN [28] have
been discussed in the previous section.

As summarized in Table III, the proposed FFN-PD neverthe-
less outperforms all 15 competing algorithms, even including
those with privileged access to additional bounding box/part
annotations.

Results on the Stanford Cars dataset. The classification
accuracy on the Stanford Cars dataset is present in Table IV.
Stanford Cars dataset does not have part annotations, thus
the part-based methods are not reported in Table IV. Our
method achieves the best performance against other state-of-
the-art methods. Compared to the region-attention method
MGE-CNN [23], which learns a mixture of granularity-specific

TABLE V
PERFORMANCE COMPARISON BETWEEN THE PROPOSED FFN-PD AND 8

EXITING FGVR METHODS ON THE FGVC-AIRCRAFT DATASET. ALL
METHODS PERFORM IN AN END-TO-END MANNER (i.e., ONE-STAGE) WITH

IMAGE-LEVEL LABELS, AND THE FIRST GROUP LEVERAGES REGION
ATTENTION MAPS WITH IMAGE-LEVEL LABELS.

Method Backbone 1-Stage Accuracy

RA-CNN [20] VGG-19 88.2
MA-CNN [21] VGG-19 X 89.9

B-CNN [36] VGG-16 X 84.1
Kernel-Pooling [24] VGG-16 X 86.9

Low-rank B-CNN [57] VGG-16 X 87.3
HBP [25] VGG-16 X 90.3

DFL-CNN [28] ResNet-50 X 91.7
DCL [11] ResNet-50 X 93.0

FFN-PD (ours) ResNet-50 X 93.2

TABLE VI
IDENTIFICATION PERFORMANCE COMPARISON OF DIFFERENT

COMBINATIONS ON THE IPANDA-50 DATASET. MAXIMUM, MEAN, AND
STANDARD DEVIATION OF THE ACCURACY (%) ARE REPORTED FROM 5
RANDOM TRIALS. AVG AND ATT DENOTE THE AVERAGE CONVOLUTION

FILTER SUPERVISION PROPOSED IN [28] AND OUR PROPOSED ATTENTIONAL
CONVOLUTION FILTER SUPERVISION, RESPECTIVELY.

Method Max. Acc. Mean Acc. STD Dev.Global Local Fusion Avg Att

X 76.3 75.7 0.70
X 73.8 73.4 0.38

X 60.3 58.7 1.10
X X 74.8 74.6 0.15

X X 84.2 83.8 0.13
X X 84.7 84.4 0.24

X X X 75.4 75.1 0.16
X X X 85.8 85.6 0.17

X X X 85.9 85.5 0.27
X X X X 86.0 85.4 0.65
X X X X 86.3 86.1 0.16

experts in multiple stages, the proposed FFN-PD outperforms
it by 0.8%. We can also observe that our method surpasses end-
to-end methods. Although DCL [11] attains a high accuracy on
this dataset, it needs a special stage for destruction initialization.
Our method is much simpler and can surpass it.

Results on the FGVC-Aircraft dataset. The classification
results on the FGVC-Aircraft dataset are shown in Table V. The
FGVC-Aircraft dataset also does not contain part annotations,
thus we compare our method with two groups of methods
including region-attention methods and end-to-end methods.
Obviously, the proposed FFN-PD obtains the best classification
performance among these methods. Due to our multiple
representations, we surpass DFL-CNN [28] by 1.5% relative
accuracy gains, which also exploits discriminative identity-
specific patches. Furthermore, we still outperform DCL [11]
and region-attention methods (e.g., RA-CNN [20] and MA-
CNN [21]), which further demonstrates the significance of the
proposed FFN-PD.

D. Ablation Studies

To validate the contribution of each component in the
proposed FFN-PD, we conduct a set of ablation experiments
on the iPanda-50 dataset.
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Fig. 11. Grad-CAM [54] visualizations of feature maps of (a) the original
image, (b) the global feature map at the G-Stream, (c) the local filtered feature
map at the L-Stream, (d) the global filtered feature map, and (e) the fusion
feature map at the F-Stream.
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Fig. 12. The visualization of the local GMP features vl. For the samples
in a given testing class (e.g., class 9 and class 27) in iPanda-50, the peak
feature value produced by the discriminative patch detector locates at the
corresponding class donated by the dash line.

Different Stream Combinations. To validate the effective-
ness of each stream in the proposed FFN-PD, we conduct
experiments on the iPanda-50 dataset with different stream
combinations. The results are summarized in Table VI. With
a single stream, the performance deteriorates obviously. The
combination of G-Stream with any other streams boosts their
performance obviously, indicating the necessity of including
global image features as visualized in Figure 11 (b). Moreover,
methods including F-Stream always perform better than those
without it (e.g., L-Stream + F-Stream versus L-Straem), which
agrees with our speculation that the hierarchical representation
is beneficial. Especially, the fusion feature (visualized in
Figure 11 (e)) is fused by the local filtered feature (visualized
in Figure 11 (c)) and the global filtered feature (visualized in
Figure 11 (d)), which further activates regions of high responses
and assists the network to emphasize important regions and
suppress background noise. Note that in our proposed method,
filter supervision (i.e., Avg and Att columns) must be evaluated
in conjunction with the L-Stream, where the patch detectors
are used to detect discriminative patches.

The visualization of the local GMP features vl is shown
in Figure 12. Thanks to the design of the attentional filter
supervision, the network has learned a set of supervised patch
detectors, where patch-level representations could present the
highest activation value in the corresponding identity.
Effect of Attentional Filter Supervision. We conduct exper-
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Fig. 13. The identification accuracy versus the number of panda identities
curve on the iPanda-50 dataset.

iments on the iPanda-50 dataset with different convolution
filter supervisions in the proposed FFN-PD. The last three
rows of Table VI present their identification accuracies, which
are characterized by columns “Avg” (as in Eq. (3), described
in [28]) and “Att” (proposed by us in Eq. (4)). They are all
combined with all three streams. The results show that both
average pooling and attentional pooling are effective, with our
proposed attentional pooling outperforms the average pooling,
which indicates the effectiveness of the attentional pooling.

Finally, the combination of three streams and our proposed
attentional pooling achieves the best result, which supports our
claim that the patch-level information, the global information,
and the hierarchical representation jointly contribute to the
overall performance.
Size of the iPanda Dataset. The number of identities in the
iPanda-50 dataset is relatively small (i.e., 50 panda identities),
and we speculate that the increase/decrease of the panda dataset
size should also increase/decrease its identification difficulty. To
verify this hypothesis, we conduct an experiment on different
subsets of the iPanda-50 dataset with the proposed FFN-PD, and
the categories in each subset are randomly selected as shown in
Figure 13. For example, the accuracy improves significantly if
the number of individual pandas is largely reduced to 10. This
also indicates that a more challenging dataset could potentially
be built by including more individual pandas.

VI. CONCLUSION

We propose a Feature-Fusion Network with Patch Detector
(FFN-PD) to address the important yet challenging Giant
Panda Identification (GPID) problem. The proposed FFN-PD
exploits discriminative local image patches in each image via
the patch detector without any bounding box/part annotations,
and fuses both global and local features to generate a hierar-
chical representation, which effectively improves identification
performance. Specifically, a new attentional cross-channel
pooling module is proposed to provide more effective training
supervision of the convolution filters in the patch detectors.
These multiple feature representation simultaneously facilitate
the recognition performance. Moreover, we propose a new
iPanda-50 dataset to evaluate the proposed FFN-PD and existing
FGVR algorithms on the GPID task, where the proposed FFN-
PD outperforms other methods by a large margin, thus verify
the effectiveness of the proposed method. In addition, the eye-
covering experiment indicates that visual features around eyes
play a significant role in panda identification.
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