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ABSTRACT

The image-based fine-grained identification of individual gi-
ant pandas (Ailuropoda melanoleuca) is an emerging technol-
ogy, and it is extraordinarily challenging due to the extremely
subtle visual differences between individual giant pandas and
limited annotated training data. To address these challenges,
we propose the Feature-Fusion Convolutional Neural Net-
work with Patch Detector (FFCNN-PD) algorithm, which
exploits the discriminative local patches and builds a hi-
erarchical representation generated by fusing both global
and local features. Specifically, an attentional cross-channel
pooling is embedded in the FFCNN-PD to improve the class-
specific patch detectors. In addition, we propose a new giant
panda identification dataset (iPanda-30) to establish a bench-
mark. Experiments on the proposed iPanda-30 dataset and
other fine-grained recognition datasets demonstrate the ef-
fectiveness of the FFCNN-PD algorithm against the existing
state-of-the-arts.

Index Terms— Fine-grained recognition, panda identifi-
cation, feature fusion, patch detector

1. INTRODUCTION

Single image-based giant panda (Ailuropoda melanoleuca)
identification could be highly challenging, as illustrated in
Fig. 1 (a), the instances of the same panda exhibit dramatic
appearance differences (large intra-class variations) due to
different illuminations, viewpoints, postures, and occlusions;
while images of different individual pandas could have ex-
tremely subtle appearance differences (small inter-class dis-
tances), as illustrated in Fig. 1 (b).

Fine-grained Panda identification (FGPI) is related to
fine-grained visual recognition (FGVR) [1, 2], as both aim
at discovering subtle differences. However, the objectives
are slightly different. The goal of generic FGVR is the pre-
diction of the subspecies/breeds within a given species (e.g.,
Labrador versus golden retriever); while FGPI is aim to iden-
tify individual pandas (e.g., panda “wuyi” versus “qiyuan” in
Fig. 1 (b)). The individual-level appearance differences make
the FGPI task more challenging.

Current FGVR methods can be approximately divided
into two categories: part-based methods and end-to-end
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(a) Images of the same panda (named as “yingying”).

wuyi sa hexing xilan qiyuan xingda

(b) Images of different individual pandas.

Fig. 1. (a) Panda “yingying”; (b) different pandas.

methods. (1) Some part-based methods [3, 4, 5, 6] exploit
discriminative part features with localization networks. Such
methods rely heavily on manual part annotations, which could
be time-consuming and expensive. Worse still, the quality of
manual part annotations is difficult to guarantee. Alterna-
tively, some part-based methods [7, 8, 3] embed attention
mechanism into sub-networks to utilize part features without
additional part annotations, at the expense of complicated
network training procedure. (2) End-to-end methods [9, 10]
often require less human intervention than their part-based
counterparts. Typically, end-to-end methods require only
image-level annotations. Some recent methods [11, 12] im-
plement end-to-end training based on bilinear pooling frame-
works, but almost all bilinear pooling-based methods only
tackle features from the last convolutional layer, which is
hardly beneficial for fine-grained tasks.

To address these challenges in FGPI, we propose the
Feature-Fusion Convolutional Neural Network with Patch
Detector (FFCNN-PD) algorithm as illustrated in Fig. 2,
which does not rely on any sub-networks and can be simply
trained end-to-end without additional part annotations. In-
spired by [13], we employ the “patch detector” to exploit the
most discriminative local patches which are the key factors
in the characteristics of giant pandas. Specifically, we fuse
the global and local features in the fusion stream (F-Stream)
to generate a hierarchical representation, which embodies
inter-layer patch feature interactions and allows the network
to further focus on more commonly discriminative features.
Furthermore, to facilitate the learning of class-specific patch
detectors, we specifically introduce a new attentional cross-
channel pooling as the convolution filter supervision.
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Fig. 2. Overview of the proposed FFCNN-PD algorithm.

The contributions of this paper include: (1) A new, mean-
ingful and challenging FGPI task based on single image,
with a new benchmark iPanda-30. (2) Leveraging “patch
detectors” and embedding them cross layers to generate more
significant representations. (3) A new hierarchical represen-
tation to capture inter-layer patch feature interactions and
a new attentional cross-channel pooling served as the con-
volution filter supervision to enhance class-specific patch
detectors. (4) An end-to-end FFCNN-PD algorithm with
multi-representations that achieves state-of-the-art both on
iPanda-30 and other FGVR datasets.

2. APPROACH

As illustrated in Fig. 2, we adopt an asymmetric multi-stream
structure inspired by [13], which consists of a local stream
(L-Stream) for patch-level supervision (loss2) and a global
stream (G-Stream1) for global supervision (loss1), respec-
tively. Specifically, this FFCNN-PD network design is quite
different from [13] in two additional loss functions (i.e., loss3
and loss4) which are discussed in the following sections.

2.1. Patch Detector and loss2
We design a 1 × 1 convolution filter as the patch detector
which could select local “patches” with high responses repre-
senting subtle discriminative characteristics of one category.
After training, this patch detector will respond to different dis-
criminative patches in one different specific category, rather
than limited to manually prescribed fixed types of parts for

1The single G-Stream network with only loss1 is later utilized as one of
the baselines, denoting generic classification network without special treat-
ment of patches or fine-grained feature representation.

each category. Thanks to this design, our algorithm does
not require additional manual part annotations, and the local
patches of each category are self-excavated by the network.

Given an image/video frame X, a C × H × W feature
map can be obtained after a certain convolution layer. There-
fore, 1× 1 convolution filter operates on the feature map and
selects “patches” with high responses, representing the most
discriminative local patches. As illustrated in Fig. 2, we em-
bed such patch detectors in both the L-Stream and G-Stream,
which is different from [13]. Considering that fine-grained
characteristics are usually located on subtle parts, we choose
the local “patches” from the L-Stream, which have smaller
receptive fields than the ones from the G-Stream. Then we
pick the maximal values across channels of the filtered fea-
ture map with the Global Max Pooling (GMP), and feed them
into a fully-connected layer with a softmax layer to get loss2,
which accounts for patch-level information.

2.2. Feature Fusion and loss3
After passing through the patch detectors of G-Stream and L-
Stream, we obtain the global filtered feature map G = G(X)
and local filtered feature map L = L(X), respectively. Sup-
pose G ∈ RCG×HG×WG , L ∈ RCL×HL×WL , where C, H
and W denote channel, height and width, respectively. Typ-
ically, CG = CL, HG < HL, WG < WL. An additional
average pooling layer is included prior to computing loss3,
which reduces its spatial dimension, L̄ = Avg-Pool(L), so
that L̄ ∈ RCG×HG×WG . Subsequently, feature fusion is im-
plemented with element-wise multiplication, F = G � L̄,
where � denotes the Hadamard/element-wise product and
F ∈ RCG×HG×WG , followed by averaging feature map at
each channel, which yields F̄ ∈ RCG , where each element

F̄ (c) =
1

HG ·WG

HG∑
i=1

WG∑
j=1

F(c, i, j), (1)

where c = 1, · · · , CG; i = 1, · · · , HG; and j = 1, · · · ,WG.
Further `2 normalization is carried out and the final “hierar-
chical representation” is obtained as F̃ = F̄/‖F̄‖2. F̃ is sub-
sequently fed into a fully connected layer and a softmax layer,
where the loss3 is computed, as illustrated in Fig. 2.

2.3. Attentional Convolution Filter Supervision: loss4
The fully connected layer used in computing loss2 inevitably
scrambles all discriminative patches together, with no specific
guarantee of the “patch detector” emphasizing specific dis-
criminative patches of a certain category. Therefore, we need
a different loss function to encourage convolution filters in
the patch detectors to emphasize class-specific discriminative
patches. While doing so, we propose an attentional cross-
channel pooling module as illustrated in Fig. 3.

Specifically, let the convolution filters (i.e., patch detec-
tors) be of size (k · n) × 1 × 1, where n is the total num-
ber of of category and k is a pre-defined number of the top-k
most discriminative local patches per panda/category. After
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Fig. 3. The proposed attentional cross-channel pooling mod-
ule is detailedly illustrated in the green rectangle.

passing through the convolution filter and the GMP, a (k ·
n)-dimensional feature vector is obtained. We conduct an
element-wise addition as V = VL + VG, where VL is from
the L-Stream and VG is from the G-Stream in Fig. 2. For
notational convenience, we reshape the (k · n)-dimensional
feature vector as a matrix V = [v1, · · · ,vn] ∈ Rk×n. In
[13], this combined V is simply average-pooled to generate a
n-dimensional vector a ∈ Rn×1,

a =
1

k
V1k×1, (2)

where 1k×1 denotes an all-ones vector of size k × 1.
Simple averaging strategies such as this in Eq. (2) could

induce balanced responses in these k patches during back-
propagation. We are concerned that Eq. (2) might assign
equal weights to patches with different semantic signif-
icance, and incur a performance penalty. Alternatively,
we propose a new attention mechanism which automati-
cally learns the weights assigned to the k local patches.
Let W = [w1, · · · ,wn] ∈ Rk×n denote the attentional
weights, with each column wi = [wi,1, · · · , wi,k]

T ∈ Rk×1,
i = 1, · · · , n. All elements in W are initialized with the
value of 1/k, and W is automatically updated during the
training process via back-propagation. Specifically,

ã = (V �W)1k×1, (3)

where � denotes the element-wise product. Subsequently, ã
is fed into a softmax layer to generate loss4.

3. EXPERIMENTS

3.1. Implementation Details and the iPanda-30 Dataset
The proposed FFCNN-PD algorithm is implemented with Py-
Torch and trained with four Nvidia 1080Ti GPUs. Our back-
bone is Resnet50 [14] pre-trained on ImageNet [15]. Regular
stochastic gradient descent optimizer is used with a momen-
tum of 0.9, a weight decay of 5×10−4 and a batch size of 32.
and the learning rate decay is set as a factor of 0.1 for every
20 epochs. The number of the most discriminative patches
per category, i.e., k is empirically fixed at 10. The overall loss
is a summation of loss1, loss2, loss3, and loss4.

We collect giant panda streaming videos from the Panda
Channel2 which monitors the daily routines of pandas.We re-

2Video streaming website in Chinese, http://live.ipanda.com.

Method Max. Mean δ P-value Conf.

Baseline 80.8 80.0 1.43 1.1e-5 >99%
MFC 86.3 85.6 0.93 5.1e-2 >94%
HBP[10] 78.4 77.6 0.66 2.7e-8 >99%
BCNN[17] 81.5 80.7 1.00 4.6e-6 >99%
DFL-CNN[13] 86.7 85.9 0.52 3.7e-2 >96%
FFCNN-PD 87.7 86.7 0.56 - -

Table 1. Performance comparison on the iPanda-30 dataset
via 5 random trials.

cruit professional zookeepers and breeders to provide identity
annotations. Subsequently, we use the structural similarity in-
dex measure (SSIM) [16] to compute the similarities between
adjacent video frames, and only retain the “key” frames with
small similarities with their previous ones. We further manu-
ally select the images with various illuminations, viewpoints,
postures, and occlusions. In addition, we manually crop out
each individual panda with a tight bounding box without as-
pect ratio requirements. The iPanda-30 dataset consists of
3, 552 images of 30 individual giant pandas with 54 ∼ 220
images per panda. This iPanda-30 dataset is available online3,
and we are in the process of further expanding the dataset.

3.2. Experimental Result
Comparison on iPanda-30. A performance comparison be-
tween the proposed FFCNN-PD algorithm and competing
ones on iPanda-30 is summarized in Table 1. All statistics
in Table 1 are obtained with 5 independent random train-
ing/testing splits (2, 120 and 1, 432 images in training and
testing splits, respectively). The maximum (Max.), mean
(Mean) and standard deviation (δ) of the accuracy (%) over
these 5 trials are reported. To account for coincidental fluctua-
tions and reveal statistical significance, a series of 5 one-tailed
student’s t-tests are carried out, with null hypothesis H0 be-
ing there is no effective advantage of FFCNN-PD over other
competing algorithms. P-values and the confidence intervals
(Conf.) of the alternative hypothesis H1 being true are also
reported with each competing algorithm.

We also implement a multi-feature concatenation (“MFC”)
method, which directly concatenates features from multiple
convolution layers, and it outperforms “Baseline”, indicat-
ing the value of incorporating cross-layer features. More
importantly, we re-implement three FGVR methods, i.e.,
(1) the classical bilinear pooling method BCNN [17]; (2)
a hierarchical bilinear pooling framework HBP [10], which
concatenates multiple cross-layer bilinear features; (3) DFL-
CNN [13], which learns a mid-level representation to capture
class-specific discriminative patches. Our proposed FFCNN-
PD outperforms all these competing ones with confidence
intervals of at least > 94%.

Ablation Studies. To isolate the effects of the four losses
in our proposed FFCNN-PD, we conduct experiments on

3https://github.com/iPandaDateset/ipanda30.git
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Fig. 4. Grad-CAM [18] visualization of “global filtered fea-
ture” and the convolutional feature maps at the end of differ-
ent branch that produces loss1, loss2,loss3, respectively.

loss1 loss2 loss3 Avera Atten Max. Mean δ

X 80.8 80.5 2.00
X 75.3 74.5 0.69

X 69.4 68.3 0.79
X X 76.5 76.0 0.41

X X 86.0 85.8 0.23
X X 86.3 85.9 0.42

X X X 77.1 76.7 0.41
X X X 87.3 86.3 0.78

X X X 86.8 86.1 0.54
X X X X 87.2 86.1 0.82
X X X X 87.7 86.7 0.56

Table 2. Classification accuracy with different loss combina-
tions on the iPanda-30 dataset via 5 random trials.

iPanda-30 dataset with different loss combinations. The
statistics are summarized in Table 2. With a single loss (e.g.,
loss1 or loss2 or loss3 ), the performance deteriorates evi-
dently. The combination of loss1 with any other loss terms
boosts their performance evidently, indicating the necessity
of including the global image features as visualized in Fig.
4 (b). Loss combinations with loss3 terms always perform
better than those without it (e.g., loss2 + loss3 versus loss2),
which agrees with our speculation that the hierarchical rep-
resentation is beneficial. Specially, the fusion feature (loss3
in Fig. 4 (e)) is fused by the local filtered feature (loss2 in
Fig. 4 (c)) and the global filtered feature (in Fig. 4 (d)), which
further activates commonly regions of high responses and
assists the network to emphasize important regions and sup-
press background noise. It can also be observed that such
discriminative regions (in Fig.4 (c)) are concentrated near
the panda faces, especially around their unique black patches
around their eyes. We are surprised that these visualizations
agree well with a popular article [19] in the Science mag-
azine, which claims that such back eye patches “may help
pandas recognize one another”.

Note that loss4 serves only as the convolution filter (i.e.,
“patch detector”) supervision, thus it is unfair to evaluate
it independently (i.e., no pure loss4 row in Table 2) and it
must be verified in conjunction with loss2. The last three
rows of Table 2 present the classification accuracies of our
method with different convolution supervisions, which are
characterized by columns “Avera” (as in Eq. (2), described

Method CUB Cars Aircraft

part-
based

PN-CNN [1] 85.4 - -
PC-DenseNet [4] 86.9 92.9 89.2
RA-CNN [22] 85.3 92.5 88.2
MA-CNN [7] 86.3 92.8 89.9
OSME [23] 86.5 93.0 -

end-
to-
end

B-CNN [17] 84.1 91.3 84.1
CBP [24] 84.0 - -
LRBP [25] 84.2 90.9 87.3
KP [9] 86.2 92.4 86.9
HBP [10] 87.1 93.7 90.3
DFL-CNN [13] 87.4 93.8 92.0

FFCNN-PD(ours) 87.9 94.7 93.2

Table 3. Classification accuracy on the larger FGVR datasets.

in [13]) and “Atten” (proposed by us in Eq. (3)). They are
all combined with loss1+loss2+loss3. The results show
that “average pooling” and “attentional pooling” both out-
perform “None”, with “attentional pooling” slightly better
than “average pooling”, which indicates the value of our
attentional pooling. Ultimately, the loss combination of
loss1 + loss2 + loss3+“attentional pooling” achieves the
best result, which supports our claim that the patch-level
information, the global information and the hierarchical rep-
resentation jointly contribute to the overall performance.

Comparison on other larger Fine-grained datasets. To
further demonstrate the effectiveness of our method, we com-
pare FFCNN-PD with 11 existing FGVR methods on other
three larger FGVR datasets (i.e., CUB-200-2011 [1], Stanford
Cars [20] and FGVC-Aircraft [21]). As the results in Table
3 shown, our end-to-end method, without additional manual
part annotations, achieves state-of-the-art performance on all
the three widely used FGVR datasets.

4. CONCLUSION

We propose the FFCNN-PD method to address the interesting
yet challenging fine-grained giant panda identification (FGPI)
task. It exploits discriminative local image patches and fuses
both global and local features to generate a hierarchical repre-
sentation. Specifically, a new attentional cross-channel pool-
ing module is proposed to provide more effective training su-
pervision of the patch detectors. Moreover, we propose a new
iPanda-30 dataset to evaluate our proposed FFCNN-PD algo-
rithm and existing FGVR algorithms with the FGPI task.
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