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Fast implementations of the sparse iterative covariance-based estimation (SPICE) algorithm are

presented for source localization with a uniform linear array (ULA). SPICE is a robust, user

parameter-free, high-resolution, iterative, and globally convergent estimation algorithm for array

processing. SPICE offers superior resolution and lower sidelobe levels for source localization

compared to the conventional delay-and-sum beamforming method; however, a traditional

SPICE implementation has a higher computational complexity (which is exacerbated in higher

dimensional data). It is shown that the computational complexity of the SPICE algorithm can be

mitigated by exploiting the Toeplitz structure of the array output covariance matrix using

Gohberg–Semencul factorization. The SPICE algorithm is also extended to the acoustic

vector-sensor ULA scenario with a specific nonuniform white noise assumption, and the fast

implementation is developed based on the block Toeplitz properties of the array output covariance

matrix. Finally, numerical simulations illustrate the computational gains of the proposed methods.
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I. INTRODUCTION

The direction-of-arrival (DOA) source localization

problem is directly applicable to many fields including radar,

sonar, communications, and the geological and biomedical

sciences. The goal of the DOA problem in passive sonar

applications is to accurately locate all sources with an array

of acoustic sensors. Various spectral estimation methods

have been applied to solving this problem and may be classi-

fied as nonparametric, parametric, and semiparametric (see,

e.g., Ref. 1).

Nonparametric methods include the well-known delay-

and-sum (DAS) beamformer and Capon beamformer. The

DAS beamformer is a computationally efficient and robust

method, but suffers in performance due to high sidelobes,

low resolution, and poor accuracy. The data adaptive Capon

beamformer improves on the DAS method, but it requires

noncoherent sources.2 Parametric methods, such as multiple

signal classification (MUSIC), can provide higher resolution

than the nonparametric methods. Unfortunately, these meth-

ods are typically very sensitive to modeling errors and can

even fail if coherent sources are present.2 The sources in the

underwater acoustic environment can be coherent due to

multipath reflections from the ocean floor or surface.

Recently, a new semiparametric algorithm, referred to

as the sparse iterative covariance-based estimation (SPICE),

has been proposed.3,4 SPICE offers superior resolution and

low sidelobe levels, simultaneously retaining robustness

against correlated sources.4 It is also a user parameter-free

method that is guaranteed to converge globally. However,

SPICE suffers from higher computational complexity when

compared with the DAS method.

In this paper, an efficient implementation of SPICE

based on Gohberg–Semencul (GS) factorization is presented,

which is inspired by previous fast implementations on Capon

and amplitude and phase estimation (APES).5–9 The inverse

of the sample covariance matrix R̂M is decomposed by

Cholesky or GS factorization5–9 and fast schemes are applied

to compute the spectral estimates. Efficient decomposition

of R̂
�1

M is achieved using the Toeplitz structure of the

approximated R̂
�1

M or the data matrices.5,7–9 After factoriza-

tion of R̂M, a fast Fourier transform (FFT) is applied to fur-

ther accelerate the computation of the spectral estimates.6,7

In this paper, the Toeplitz matrix structure produced by the

GS factorization of the inverse of the SPICE covariance ma-

trix RM is exploited, simultaneously applying a Levinson–

Durbin type algorithm (see e.g., Ref. 10). If the received sig-

nals are also collected from a uniform linear array (ULA),

the computational efficiency can be further increased by use

of the FFT and inverse fast Fourier transform (IFFT) to per-

form the matrix-vector products.

The fast implementation of the SPICE algorithm on

ULA of vector sensors is also presented in this paper. Acous-

tic vector-sensor arrays have attracted much attention in

recent years. The U.S. Navy has been using vector-sensor

arrays in the form of “DIFAR” (directional low frequency

analysis and recording sonobuoys) to study the acoustic

properties of the ocean11 and researchers have been using

them to study marine life.12 A typical vector-sensor mea-

surement consists of a set of measurements of acoustic parti-

cle velocities (first order derivatives of the acoustic pressure)

as well as the measurement of the omnidirectional acoustic

pressure. With the direct measurements of directional veloc-

ities, vector-sensor arrays are superior to conventional

hydrophone arrays of the same aperture in many perform-

ance criteria: free of the left/right bearing ambiguity even for

1D array, capable of simultaneously estimating both azimuth
*Implementation codes available online: 
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and elevation angles, etc.13 The cost for these advantages is

that the measurement of a vector-sensor array will have a

higher dimensionality (higher computational complexity)

than that of a standard hydrophone array. To mitigate the

computational complexity, the fast implementation of SPICE

is also extended to the vector-sensor array scenario by

exploiting the block Toeplitz structure of the array output co-

variance matrix (e.g., Ref. 14) using a GS type factorization

based on a generalized Levinson–Durbin algorithm (LDA)

and FFT/IFFT.

Notation: We denote vectors and matrices by boldface

lowercase and boldface uppercase letters, respectively. Table I

specifies symbols and their meanings in the paper.

The rest of the paper is organized as follows. The DOA

source localization problem is formulated in Sec. II. In

Section III, the SPICE algorithm for array processing is

briefly reviewed. In Sec. IV, the fast implementation of

SPICE for a hydrophone ULA is presented. In Sec. V, prop-

erties of vector-sensor arrays are reviewed and the fast

implementation of SPICE for vector-sensor ULAs is pre-

sented. Section VI provides simulated numerical results that

show the computational gains of our method. Section VII

contains a concise summary of the results.

II. DATA MODEL AND PROBLEM FORMULATION

Let a ULA of M omnidirectional sensors with half-

wavelength interelement spacing receive narrowband signals

impinging from the sources with unknown locations. Let X
denote the set of possible impinging angles, and h be the angle-

of-arrival. Also, let hkf gK�1
k¼0 denote a grid that covers X. The

M� 1 complex snapshot vectors can be modeled as (e.g., Ref. 3)

yM nð Þ ¼ AMx nð Þ þ e nð Þ; n ¼ 1; :::;N; (1)

where AM ¼D aM h0ð Þ; :::; aM hK�1ð Þ½ � is the steering matrix

with each steering vector aM hkð Þ ¼D 1; ejp sin h0ð Þ; :::;
�

ejp M�1ð Þ sin hkð Þ�T being parameterized by the scalar location

parameter hk. The vector x nð Þ ¼D x0 nð Þ; :::; xK�1 nð Þ½ �T con-

tains the K unknown complex-valued signals, and e(n) is the

noise term. We assume E e nð ÞeH �nð Þ½ � ¼ rIMdn;�n, where

dn;�n ¼ 1 if n ¼ �n and 0 otherwise. Let us further assume

that e(n) and x(n) are statistically independent. Thus,

E x nð ÞxH �nð Þ½ � ¼ PKdn;�n, where PK ¼D Diag(p0,…, pk�1), with

pk denoting the unknown signal power at hk. This leads to

the covariance matrix of yM(n) (e.g., Refs. 3 and 4).

RM ¼D AMPKAH
M þ rIM: (2)

This covariance matrix is traditionally estimated by the sample

covariance matrix R̂M¼D 1
N YYH, where Y¼D yM 1ð Þ;:::;yM Nð Þ

� �
.

III. THE SPICE ALGORITHM

SPICE is a recently introduced method for sparse signal

recovery in linear models derived from a robust covariance

fitting criterion. It does not depend on any hyperparameters

and achieves better performance than the well-known meth-

ods such as MUSIC.3,4 In the particular case of spatially and

temporally white uniform noise (i.e., E [e(n)eH(n)]¼ rIM),

the iterative steps of the SPICE method (SPICEþ as named

in Ref. 4) are summarized as follows:

Initialize fp 0ð Þ
k g

K�1
k¼0 using DAS and r(0) with a small value

(e.g., the average of the smallest M values in fp 0ð Þ
k g

K�1
k¼0 ). At the

ith iteration the following should take place:

(1) Update R
ið Þ

M using the signal power estimates fp i�1ð Þ
k gK�1

k¼0

and the noise power estimate r(i�1) from the (i� 1)th

iteration,

R
ið Þ

M ¼ AMP
i�1ð Þ

K AH
M þ r i�1ð ÞIM; (3)

where P
i�1ð Þ

K ¼D Diag p
i�1ð Þ

K

n o
and p

i�1ð Þ
K

¼D p
i�1ð Þ

0 ; :::;p
i�1ð Þ

K�1

h iT
.

(2) Using the most recently obtained R
ið Þ

M in Eq. (3), noise

power estimate r(i�1) and signal power estimates

fp i�1ð Þ
k gK�1

k¼0 , compute the auxiliary variable q(i),

q ið Þ ¼
XK�1

k¼0

x1=2
k p

i�1ð Þ
k aH

M hkð ÞR ið Þ�1

M R̂
1=2

M

��� ���
F

þc1=2r i�1ð Þ R
ið Þ�1

M R̂
1=2

M

��� ���
F
: (4)

(3) Estimate the noise power,

r ið Þ ¼ r i�1ð Þ
R

ið Þ�1

M R̂
1=2

M

��� ���
F

c1=2q ið Þ : (5)

(4) Update fp ið Þ
k g

K�1
k¼0 using q(i) and r(i),

p
ið Þ

k ¼p
i�1ð Þ

k

aH
M hkð ÞR ið Þ�1

M R̂
1=2

M

��� ���
F

x1=2
k q ið Þ

; k¼0;1; :::;K�1; (6)

until practical convergence,15 where xkf gKþM�1
k¼0 are

constants over all iterations. They are given by

xk ¼D aH
M hkð ÞR̂

�1

M aM hkð Þ=N; k ¼ 0; :::;K � 1;

xKþk�1 ¼D R̂
�1

M k; kð Þ=N; k ¼ 1; :::;M;

where R̂
�1

M k; kð Þ denotes the element at the kth row and

the kth column of the matrix R̂
�1

M . c is given by

TABLE I. Notation used in the text.

D a definition

�k kF Frobenius norm

� the Hadamard (elementwise) matrix product

� the Kronecker matrix product

(�)T transpose of a vector or matrix

(�)* complex conjugate

(�)H conjugate transpose of a vector or matrix

Diag(�) diagonal matrix with a center dot (�)as its diagonal elements

Ip Identity matrix of dimension p� p

Jp exchange matrix of dimension p� p, with ones on the antidiagonal



c ¼D
XKþM�1

k¼K

xk:

Note that during each iteration, we update R
ið Þ

M based on

the latest estimates of signal powers fp i�1ð Þ
K gK�1

k¼0 and noise term

r(i�1). The terms R
ið Þ�1

M

��� R̂
1=2

M

���
F

and aH
M hkð ÞR ið Þ�1

M R̂
1=2

M

������
F

listed in the above-presented iterative steps [Eqs. (4)–(6)] have

simpler forms,

R
ið Þ�1

M R̂
1=2

M

��� ���2

F
¼ 1

N

XN

n¼1

tr R
ið Þ�1

M yM nð ÞyH
M nð ÞR ið Þ�1

M

h i

¼ 1

N

XN

n¼1

yH
M nð ÞR ið Þ�1

M

h i
R

ið Þ�1

M yM nð Þ
h i

¼ 1

N

XN

n¼1

R
ið Þ�1

M yM nð Þ
��� ���2 (7)

and similarly,

����aH
MðhkÞRðiÞ

�1

M R̂
1=2

M

����
2

F

¼ 1

N

XN

n¼1

tr

�
aH

MðhkÞRðiÞ
�1

M

�yMðnÞyH
MðnÞR

ðiÞ�1

M aMðhkÞ
�

¼ 1

N

XN

n¼1

����aH
mðhkÞRðiÞ

�1

M yMðnÞ
����
2

: (8)

IV. FAST IMPLEMENTATION FOR UNIFORM LINEAR
ARRAYS OF HYDROPHONES

The direct implementation of SPICE neglects the Toe-

plitz structure of the Hermitian matrix RM. Based on the GS

factorization (e.g., Refs. 16 and 17), the inverse of the

SPICE covariance matrix RM can be represented by a series

of Toeplitz matrices. This factorization improves the imple-

mentation efficiency of the matrix-vector product [i.e.,

R
ið Þ�1

M yM nð Þ in Eqs. (7) and (8). Moreover, if the spatial fre-

quency f f ¼D sin h
� 	

is uniformly sampled, AM is the upper

part of an FFT matrix.

A. Fast computation of the covariance matrix RM

Define RM ¼
D

AMPKAH
M. As the steering matrix AM is a

Vandermonde matrix, RM is a Hermitian Toeplitz matrix

and it is fully specified by its first column, which is given by

RM ¼ AMPKAH
M ¼

XK�1

k¼0

pkaM hkð ÞaH
M hkð Þ

¼

r0 r1 � � � rM�1

r�1 r0 � � � rM�2

..

. ..
. . .

. ..
.

r�M�1 r�M�2 � � � r0

2
66664

3
77775: (9)

From Eq. (9), and assume that spatial frequency is uniformly

sampled, each element in Eq. (9) is specified by

rm ¼
XK�1

k¼0

pke�j2pmk=K; m ¼ 0; :::;M � 1; (10)

which indicates that rmf gM�1
m¼0 are the first M elements of the

K-point FFT of pkf gK�1
k¼0 .

By retaining the first M elements of the FFT result, RM

can be computed using FFT within O K log2 Kð Þ½ � flops. Con-

sequently, the first column of RM can be obtained by adding

r to r0 [see Eq. (3)].

B. Fast computation of R�1
M yM nð Þ

Define the vector dM(n) as

dM nð Þ ¼D R�1
M yM nð Þ; n ¼ 1; :::;N: (11)

dM(n) appears in Eqs. (7) and (8) and can be solved using the

GS factorization and LDA once the first column of RM is

available.

Consider the partitioning of RM:

RM ¼ r0 þ r rH
M�1

rM�1 RM�1

� �
(12)

¼ RM�1 �r�M�1

�rT
M�1 r0 þ r

� �
; (13)

where rM�1 ¼D r�1; r
�
2; :::; r

�
M�1

� �T
, and �rM�1 denotes the

reversed row ordering version of rM�1, i.e., �rM�1

¼ JM�1rM�1 ¼ r�M�1; :::; r
�
2 ; r
�
1

� �T
.

Applying the matrix inversion lemma (e.g., Ref. 18) to

Eqs. (12) and (13) yields

R�1
M ¼

0 0

0 R�1
M�1

� �
þ 1

aM�1

1

wM�1

� �
1;wH

M�1

� �
(14)

and

R�1
M ¼

R�1
M�1 0

0 0

� �
þ 1

aM�1

�w�M�1

1

� �
�wT

M�1; 1
� �

; (15)

respectively, where wM�1 ¼ �R�1
M�1

rM�1, �wM�1 ¼ JM�1wM�1,

and am�1¼ r0þ r� rH
M�1R�1

M�1rM�1.

Based on Eqs. (14) and (15), the displacement represen-

tation (see, e.g., Ref. 19) of R�1
M is given by

rzM ;zT
M

R�1
M ¼

D
R�1

M � ZMR�1
M ZT

M

¼ 1

aM�1

1

wM�1

� �
1;wH

M�1

� �
� 1

aM�1

0

w�M�1

� �
0;wT

M�1

� �
; (16)

where ZM
20 is an M�M matrix with ones on the first sub-

diagonal and zeros everywhere else. Hence the GS formula

(see, e.g., Refs. 5 and 21) of R�1
M is given by



R�1
M ¼ LM t1;ZMð ÞLH

M t1;ZMð Þ
� LM t2;ZMð ÞLH

M t2;ZMð Þ; (17)

where t1 ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
aM�1
p� �

1;wM�1½ �T , t2 ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
aM�1
p� �

0; JM�1w�M�1

� �T
, and LM t;Zð Þ ¼D t;Zt;…;ZM�1t

� �
denotes a

Krylov matrix

Based on Eqs. (16) and (17), R�1
M only depends on

wM�1 and aM�1, both of which can be computed using the

Levinson–Durbin equations detailed in Appendix A and

summarized in Table II.

Note that the displacement, rzM ;zT
M

R�1
M is of rank 2. This

is in fact a property for all Toeplitz nonsingular matrices:

The inverse shares the same displacement rank as the origi-

nal matrix (e.g., Refs. 1, 5, and 21). Also note that in Eq.

(17) both LM t1;ZMð Þ and LM t2;ZMð Þ are lower triangular

Toeplitz matrices, which makes possible the computation of

matrix vector product R�1
M yM nð Þ in Eq. (11) using FFT

(detailed in Appendix E).

The fast implementation of SPICE for hydrophone

ULAs is summarized as follows: For each iteration of

SPICE, do the following:

(1) Given pi�1
k


 �K�1

k¼0
from the previous iteration, compute

rmf gM�1
m¼0 in Eq. (10) using FFT with O K log2 Kð Þ flops.

(2) Given rmf gM�1
m¼0 , compute the generators wM�1 and aM�1

using LDA detailed in Table II with O M2ð Þ flops.

(3) Given the generators, calculate fR ið Þ�1

M yM nð ÞgN
n¼1 in Eq.

(7) using FFT with O MN log2 Mð Þ flops.

(4) Given fR ið Þ�1

M yM nð ÞgN
n¼1, calculate faH

MðhkÞRðiÞ
�1

M

yMðnÞg
N
n¼1;

K�1
k¼0 in Eq. (8) using FFT with O NK log2 Kð Þ

flops.

(5) Given fR ið Þ�1

M yM nð ÞgN
n¼1 and faH

M hkð ÞR ið Þ�1

M

yM nð ÞgN
n¼1;

K�1
k¼0 calculate R

ið Þ�1

M R̂
1=2

M

��� ���
F

in Eq. (7) and

aH
M hkð ÞR ið Þ�1

M R̂
1=2

M

��� ���
F

in Eq. (8) with O MNð Þ and O NKð Þ
flops, respectively.

(6) Given R
ið Þ�1

M R̂
1=2

M

��� ���
F

and aH
M hkð ÞR ið Þ�1

M R̂
1=2

M

��� ���
F
, calculate

q(i) in O Kð Þ flops.

(7) Given R
ið Þ�1

M R̂
1=2

M

��� ���
F
, calculate r(i) in O 1ð Þ flops.

(8) Given aH
M hkð ÞR ið Þ�1

M R̂
1=2

M

��� ���
F
, update p

ið Þ
k

n oK�1

k¼0
in O Kð Þ

flops.

V. FAST IMPLEMENTATION OF SPICE FOR UNIFORM
LINEAR ARRAYS OF VECTOR SENSORS

A. Source localization with ULA of vector sensors

A vector-sensor array consists of a series of vector-sensor

elements, each of which incorporates one conventional

hydrophone and a series of geophones. The set of geophones

are typically mounted at the same location as the hydrophone

and orthogonal to each other. The geophones directly collect

directional information such as particle velocities or accelera-

tions, which contributes to advantageous properties compared

to 1D hydrophone arrays, such as better resolution for fixed

aperture, less aliasing effects in spatially undersampled wave-

field and absence of left/right ambiguities (e.g., Refs. 13, 22,

and 23).

Signals collected from each vector-sensor element typi-

cally consists of both the acoustic pressure measurement p
and the orthogonal directional velocities measurements ux,

uy, uz. Assume that the orientations of the geophones in each

vector-sensor element are known, velocity measurements

from all elements can be rotated accordingly to be aligned

with the global coordinates. After this aligning and scaling

procedure, the measurement of a single vector-sensor ele-

ment can be denoted as a scalar-vector product p � hD(hi),

and the steering vector aDM of the vector-sensor array is

given by (e.g., Ref. 13)

aDM hið Þ ¼ aM hið Þ � hD hið Þ; (18)

where aM(hi) denotes the steering vector of the array that

consists of only the hydrophones in the vector-sensor array,

hD(hi) denotes the real-valued response of a single vector-

sensor element and hi denotes a generic bearing parameter.

In the general case, denote h(hi) as

hD hið Þ ¼D 1; h2 hið Þ; :::; hD hið Þ½ �T ; (19)

where hd(hi) denotes the dth element in hD(hi), d¼ 2,…, D.
From Eq. (18), the steering matrix ~ADM of the vector-sensor

array is given by

~ADM ¼D aDM h0ð Þ; aDM h1ð Þ; :::; aDM hK�1ð Þ½ �: (20)

The noise term for the vector-sensor array measurements is

much more complicated with nondiagonal elements in the

covariance matrix even in the isotropic Gaussian noise field

(e.g., Refs. 24–26, and references therein). However, a sim-

plified nonuniform white Gaussian noise model in the fol-

lowing equation27 can be applied here with only minor

performance degradation, thanks to the robustness of the

SPICE algorithm (see Refs. 3 and 4, which will also be illus-

trated numerically in Sec. VI). Consider an M-element

vector-sensor array, where each element consists of one

omnidirectional hydrophone and (D� 1) acoustic velocity

sensors. Each measurement from this array forms a DM� 1

column vector ~yDM:

~yDM nð Þ ¼ ~ADMx nð Þ þ ~eDM nð Þ; n ¼ 1; :::;N; (21)

where E ~eDM nð Þ~eH
DM �nð Þ

� �
¼ IM � Diag r1; :::; rDð Þð Þdn;�n (see,

e.g., Ref. 13). Based on this assumption on noise, the

DM�DM array output covariance matrix ~RDM is given by

~RDM ¼ ~ADMPK
~A

H

DM þ IM � Diag r1; :::; rDð Þ; (22)

TABLE II. Levinson–Durbin alogrithm for generators wt and at.

Initialization w1 ¼ � r�
1

r0þr and a1 ¼ r0 þ rþ r1w1

For t¼ 2,…, M� 1 wt�1 ¼ wT
t�1Jt�1rt�1 þ r�t

wt ¼
wt�1

0

��
� 1

at�1

Jt�1w�t�1

1

��
wt�1

at ¼ at�1 � jwt�1j2=at�1



and it can be estimated by the sample covariance matrix

R̂DM. Reminiscent of the SPICE derivations in Ref. 4, the

estimates of the signal powers pkf g
K�1
k¼0 and noise powers

rdf gD
d¼1 can be obtained by solving the problem in [Eq. (22)

in Ref. 4]. Analogous to [Eq. (29) in Ref. 4] and by incorpo-

rating the noise model in Eq. (21), this minimization prob-

lem is simplified as

XK

k¼1

ckk k2

pk
þ
XD

d¼1

XM

m¼1

cKþdþ m�1ð ÞD
�� ��2

r2

; (23)

subject to

XK

k¼1

xkpk þ
XD

d¼1

cdrd ¼ 1; (24)

where

cd ¼
D XM

m¼1

xKþdþ m�1ð ÞD; (25)

and ckf gKþMD
k¼1 are defined in Eq. (28) of Ref. 4. By the

Cauchy–Schwarz inequality, we have

"XK

k¼1

x1=2
k kckk þ

XD

d¼1

c1=2
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM

m¼1

kcKþdþðm�1ÞDk2

vuut #2

¼
"XK

k¼1

x1=2
k p

1=2
k

kckk
p

1=2
k

þ
XD

d¼1

c1=2
d r1=2

d

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
m¼1 kcKþdþðm�1ÞDk2

q
�2

r1=2
d

	
"XK

k¼1

kckk2

pk

þ
XD

d¼1

PM
m¼1 kcKþdþðm�1ÞDk2

rd

#"XK

k¼1

xkpk þ
XD

d¼1

cdrd

#
2

¼
XK

k¼1

kckk2

pk
þ
XD

d¼1

XM

m¼1

kcKþdþðm�1ÞDk2

rd
: (26)

The previous equality holds if and only if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
m¼1 cKþdþ m�1ð ÞD

�� ��2
q

ffiffiffiffiffi
rd
p ¼ qc1=2

d r1=2
d ; (27)

and similarly for the signal powers:

ckk k
p

1=2
k

¼ qx1=2
k p

1=2
k : (28)

Therefore, the solutions to Eq. (23) are

pk ¼
ckk k

x1=2
k q

; k ¼ 1; :::;K; (29)

rd ¼
PM

m¼1 cKþdþ m�1ð ÞD
�� ��2

h i1=2

c1=2
d q

; d ¼ 1; :::;D; (30)

where

q¼D
XK

k¼1

x1=2
k ckk kþ

XD

d¼1

c1=2
d

XM

m¼1

cKþdþ m�1ð ÞD
�� ��2

" #1=2
8<
:

9=
;:

(31)

Substituting Eqs. (29)–(31) into Eq. (23) of Ref. 4, the

SPICE iterative steps for the vector-sensor array is given as

follows:

Initialize signal power estimates using DAS and

fr 0ð Þ
d g

D
d¼1 with a series of small values (e.g., the average of

the smallest M values in fp 0ð Þ
k g

K�1
k¼0 ). At the ith iteration,

(1) Update the ~RDM ið Þ using Eq. (22),

(2) Compute the auxiliary variable q(i):

q ið Þ ¼
XK

k¼1

x1=2
k p

i�1ð Þ
k

~aDM hkð ÞH ~R
�1

DM ið Þ~R1=2

DM

��� ���:
þ
XD

d¼1

c1=2
d r i�1ð Þ

d
~R
�1

DM ið ÞR̂1=2

DM

� 	
� 1M�DM�udð Þ

��� ���
F
:

(32)

(3) Update the noise variance estimates,

r ið Þ
d ¼ r i�1ð Þ

d

~R
�1

DM ið ÞR̂1=2

DM

� 	
� 1M�DM � udð Þ

��� ���
F

c1=2
d q ið Þ

;

d ¼ 1; :::;D; (33)

where ud denotes the dth column of the identity matrix

ID

(4) Update source power estimates:

p
ið Þ

k ¼p
i�1ð Þ

k

~aDM hkð ÞH ~R
�1

DM ið ÞR̂1=2

DM

��� ���
x1=2

k q ið Þ
; k¼1; :::;K; (34)

until practical convergence.

The term ~R
�1

DM ið ÞR̂1=2

DM

� 	��� � 1M�DM � udð ÞkF can be

obtained by first calculating the DM�DM dimensional ma-

trix ~R
�1

DM ið ÞR̂1=2

DM, and then only selecting the elements at row

d, dþD, dþ 2D, and computing their Frobenius norm

subsequently.

B. Computation of the block Toeplitz covariance
matrix in vector sensor arrays

As the number of sensors [DM in Eq. (22)] or the num-

ber of scanning angles (K) increases, the computational com-

plexity of ~RDM increases as well. However, the block

Toeplitz matrix structure can be exploited to compute ~RDM

efficiently,

~RDM ¼
XK�1

k¼1

pkaDM hkð ÞaH
DM hkð Þ þ IM � Diag r1; :::; rDð Þ

(35)



¼

R0 R1 R2 � � � RM�1

R�1 R0 R1 � � � RM�2

R�2 R�1 R0 � � � � � �
..
. ..

. ..
. . .

. ..
.

R�M�1 R�M�2 � � � � � � R0

2
66666664

3
77777775

þ IM � Diag r1; :::; rDð Þ: (36)

Analogous to Eq. (10),

Rm ¼
XK�1

k¼0

pk hD hkð ÞhT
D hkð Þ

� �
e�j2pmk=K;

m ¼ 0; :::;M � 1: (37)

From Eqs. (19) and (37), each block Rm is a symmetric ma-

trix, and it is possible to calculate its elements using FFT.

For the notational simplicity, we temporarily assume D¼ 3,

and the block Rm has the following structure:

Rm ¼
rm;1 rm;2 rm;4

rm;2 rm;3 rm;5

rm;4 rm;5 rm;6

2
4

3
5: (38)

Note that the elements of Rm defined in Eq. (38) can be com-

puted from pk and hd(hi) using FFT:

rm;1 ¼
XK�1

k¼0

pke�j2pmk=K;

rm;2 ¼
XK�1

k¼0

pkh2 hkð Þð Þe�j2pmk=K;

rm;3 ¼
XK�1

k¼0

pkh2
2 hkð Þ

� �
e�j2pmk=K;

rm;4 ¼
XK�1

k¼0

pkh3 hkð Þð Þe�j2pmk=K;

rm;5 ¼
XK�1

k¼0

pkh2 hkð Þh3 hkð Þð Þe�j2pmk=K;

rm;6 ¼
XK�1

k¼0

pkh2
3 hkð Þ

� �
e�j2pmk=K:

C. Displacement representation of ~R
�1

DM

Given the block Toeplitz covariance matrix ~RDM, the

generalized LDA can be performed to compute the genera-

tors of displacement rzM; z
T
M

~R
�1

DM.

According to the Toeplitz block structure of ~RDM in Eq.

(36), it can be expressed as

~RDM ¼
R0

�RH
DðM�1Þ

�RDðM�1Þ ~RDðM�1Þ

" #
(39)

¼
~RDðM�1Þ R̂DðM�1Þ
R̂H

DðM�1Þ R0

" #
; (40)

where �RDm and R̂Dm denote block matrix of dimension

Dm� D : �RDm ¼ RH
1 ; :::;R

H
m

� �T
and R̂Dm ¼ JDm

�R�DmJD;
m ¼ 1; :::;M � 1.

Application of the matrix inversion lemma (e.g.,

Ref. 18) for partitioned matrices to Eqs. (39) and (40) yields,

respectively:

~R�1
DM ¼

~R�1
DðM�1Þ 0

0 0

� �
þ �BDM

�BH
DM (41)

¼ 0 0

0 ~R�1
DðM�1Þ

� �
þ �ADM

�AH
DM; (42)

where �ADM and �BDM are block matrices of dimension

DM�M, given by

�ADM ¼D
IM

ADðM�1Þ

� �
Q
�1=2
M�1 ; (43)

�BDM ¼D
IM

BDðM�1Þ

� �
D�1=2

M�1 ; (44)

respectively, where

ADðM�1Þ ¼ �~R
�1

DðM�1Þ
�RDðM�1Þ; (45)

BDðM�1Þ ¼ �~R
�1

DðM�1ÞR̂DðM�1Þ; (46)

QM�1 ¼ R0 þ �RH
DðM�1ÞADðM�1Þ; (47)

DM�1 ¼ R0 þ R̂H
DðM�1ÞBDðM�1Þ: (48)

By the persymmetry property of ~RDM (e.g., Refs. 28 and 29),

i.e.,

JDm
~RDmJDm ¼ ~R

T

Dm; m ¼ 1;…;M (49)

the matrices �BD M�1ð Þ and AD M�1ð Þ, DM�1, and QM�1 are

related through

ADðM�1Þ ¼ JDðM�1ÞB�DðM�1ÞJD; (50)

QM�1 ¼ JDDT
M�1JD: (51)

By using Eqs. (41)–(51), the displacement representation

(DR) of ~R
�1

DM takes the following form:

rZM�ID;Z
T
M�ID

~R�1
DM ¼ �ADM

�AH
DM � ðZM � IDÞ

� �BDM
�BH
DMðZT

M � IDÞ: (52)

Note that the generators BD M�1ð Þ and DM�1 of ~R
�1

DM involved

in Eq. (52) are all block matrices related to the forward pre-

dictor [Eqs. (41)–(51)]. These generators can be computed



thanks to the following lemma proved in Appendix B and

summarized by Table III.

Lemma 1: For m¼ 2,…, M – 1,

BDm ¼
0

BDðm�1Þ

� �
þ JDm

B�Dðm�1Þ
ID

� �
Xm; (53)

where Xm ¼D D��m�1 Rm þ BT
D m�1ð Þ

�R�D m�1ð Þ

h i
JD, and

Dm ¼ Dm�1 � XH
mDT

m�1Xm: (54)

Once the DR of the matrix ~R
�1

DM is obtained, the GS factori-

zation of ~R
�1

DM can be subsequently computed. Let ti
DM


 �D

i¼1

denote the D columns of the �ADM and ti
DM


 �2D

i¼Dþ1
denote

the D columns of ZM � IDð Þ �BDM. Columns and rows in

Eq. (52) can be expressed explicitly as follows:

rZM�ID;Z
T
M�ID

~R�1
DM ¼

D X2D

i¼1

rit
i
DMtiH

DM; (55)

where ri¼ 1 for i¼ 1,., D and ri¼�1 for i¼ (Dþ 1),…,2D.
Given Eq. (55), the GS factorization of ~R

�1

DM takes the

following form:

~R
�1

DM¼
XM�1

j¼0

ðZM�IDÞjðrZM�ID;Z
T
M�ID

~R
�1

DMÞðZT
M�IDÞj (56)

¼
X2D

i¼1

ri

XM�1

j¼0

ðZM � IDÞjðti
DMtiH

DMÞðZT
M � IDÞj

" #
(57)

¼
X2D

i¼1

riLDMðti
DM;ZM � IDÞLH

DMðti
DM;ZM � IDÞ; (58)

where

LDMðti
DM;ZM � IDÞ

¼ ti
DM; ðZM � IDÞti

DM;…; ðZM � IDÞM�1
ti
DM

h i
: (59)

Due to the fact that LDM tiDM; ZM � ID

� �
is a DM�M lower

block triangular Toeplitz matrix, the matrix-vector product
~R
�1

DMyDM can be efficiently computed using FFT (detailed in

Appendices C and D).

The fast implementation of SPICE with vector-sensor

ULAs is summarized as follows:

For each iteration of SPICE, do the following:

(1) Given pi�1
k


 �K�1

k¼0
from the previous iteration, compute

the auxiliary matrix �RD M�1ð Þ using a series of FFTs with

O DK log2 Kð Þ flops.

(2) Given �RD M�1ð Þ, compute the generators BD M�1ð Þ and

DM�1 using the generalized LDA with O DM2ð Þ flops.

(3) Given the generators, calculate ~R
�1

DMR̂
1=2

DM using FFT with

O DM2 log2 Mð Þ flops.

(4) Given ~R
�1

DMR̂
1=2

DM, calculate aDM hkð ÞR�1
DMR̂

1=2

DM, for

k¼ 0,1,…, K � 1, using FFT with O DMK log2 Kð Þ flops.

(5) Given ~R
�1

DMR̂
1=2

DM, calculate all ~R
�1

DMR̂
1=2
DM

� 	���
� 1M�DM � udð Þ

���
F
, d¼ 1,…, D in O D2M2ð Þ flops.

(6) Given aDM hkð Þ~R�1
DMR̂

1=2
DM, k¼ 0,…, K� 1 and

~R
�1

DMR̂
1=2

DM

������
F
, calculate q(i) in O K þ Dð Þ flops.

(7) Given ~R
�1

DMR̂
1=2

DM

� 	��� � 1M�DM � udð Þ
���

F
, d ¼ 1,…, D,

calculate fr ið Þ
d g

D
d¼1 in O Dð Þ flops.

(8) Given aDM hkð Þ ~R�1
DMR̂

1=2
DM, k¼ 0… K � 1, update fp ið Þ

k g
K�1
k¼0

in O Kð Þ flops.

VI. NUMERICAL EXAMPLES

In this section, numerical examples are provided to

compare the computational complexity of the direct imple-

mentation and the proposed fast implementations of SPICE.

This section focuses on the DOA estimation problem of

fixed sources with both hydrophone ULAs and vector-sensor

ULAs. Without any loss of generality, only the estimation of

the azimuth angle is considered herein.

In all of the following figures, five uncorrelated sources

are present with the following true angles-of-arrival:

h1¼�44.4
, h2¼�36.9
, h3¼�32.7
, h4¼ 11.5
 and

h5¼ 53.1
. The corresponding truth signals are x1(n)

¼ 10ein1(n), x2(n)¼ 3ein2(n), x3(n)¼ 10ein3(n), x4(n)¼ 1.8ein4(n)

and x5(n)¼ ein5(n), where n 2 {1,…, N} denotes the index of

the available snapshots. The phase values {n1(n)},…,

{n5(n)} are independent and identically distributed random

variables with uniform distribution over [0, 2p). The ambient

noise is assumed to be temporally isotropic white and the

“diffuse” noise model in Ref. 26 is applied. For the hydro-

phone ULAs with half-wavelength interelement spacing,

the noise term is circularly symmetric complex-valued

white Gaussian random processes. For the vector-sensor

ULAs with half-wavelength interelement spacing, the

noise covariance matrix Qdm has complicated structures.25,26

In the following simulations, we consider a vector-sensor

ULA with 2-D velocity measurements in the x–y plane,

therefore, the measurements is given by ~yDM

¼ pr1; �ux
r1; �u

y
r1; pr2; �u

x
r2; �uy

r2; :::
� �T

, where pr1 denotes the

acoustic pressure measurement at location r1, and �ux
r1 and

�uy
r1 denote, respectively, directional velocities ux and uy

scaled by the acoustic impedance (qc). Assume that the

noise power at the array origin is r. The corresponding co-

variance matrix can be obtained by computing the interele-

ment correlations (see Refs. 25 and 26):

TABLE III. The L–D-type algorithm for generators BDm and Dm.

Initialization BD1 ¼ R�1
0 R�1 and D1 ¼ R0 � RH

1 R�1
0 R1

For m¼ 2,…, M� 1 Xm ¼ D��m�1 Rm þ BT
D m�1ð Þ

�R�D m�1ð Þ

ih
JD

BDm ¼
0

BD m�1ð Þ

��
þ JDm

B�D m�1ð Þ
ID

��
Xm

Dm ¼ Dm�1 � XH
mDT

m�1Xm



FIG. 1. (Color online) DOA estima-

tion based on measurements of a

hydrophone ULA (a)–(c) and a

vector-sensor ULA (d)–(f). Esti-

mates are obtained with (a) DAS, (b)

direct implementation of SPICE,

and (c) fast implementation of

SPICE and (d) DAS, (e) direct

implementation of SPICE, and (f)

fast implementation of SPICE. Both

ULAs have M¼ 20 sensors and

collect N¼ 10 M snapshots. The

vertical dashed lines indicate the

true DOAs.

FIG. 2. (Color online) Computa-

tional time comparison of the direct

implementation of SPICE and fast

implementations (SPICE-GS) for (a)

hydrophone ULA and (b) vector-

sensor ULA against the number of

sensors M in the array, with

N¼ 10 M available snapshots and

K¼ 10 M angular scanning points.
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r
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; (60)

where Q�ux
r1
;�ux

r2
¼ j2

12
�2ð Þ sin j12þ2j12 cos j12

j3
12

r; Q�uy
r1
;�uy

r2

¼ sin j12�j12 cos j12

j3
12

r; and jij¼ 2pdij/k, with dij denoting the

distance between the ith and jth sensor, and k denoting the

wavelength.

In Fig. 1, we show a DOA estimation example using

DAS (periodogram), direct implementation and fast imple-

mentation of the SPICE algorithm, with a 20-element

hydrophone ULA and a 20-element vector-sensor ULA with

half-wavelength intersensor spacing. Both arrays collect

N¼ 200 snapshots and K¼ 400 scanning angular points are

used. These angular scanning points are distributed uniformly

across the spatial frequency f. A moderate signal-to-noise

ratio (SNR) of 15 dB is assumed here and the true source

locations are indicated by dashed vertical lines in Fig. 1.

In the hydrophone ULA scenario, the fast implementa-

tion in Fig. 1(c) offers identical results to the direct imple-

mentation in Fig. 1(b). Both implementations produced

significantly enhanced angular resolution and attenuated

sidelobe levels compared to DAS in Fig. 1(a). For instance,

the second source at h2¼�36.9
 is missed by the conven-

tional DAS due to the method’s severe power leakage and

inadequate angular resolution, whereas both SPICE imple-

mentations were able to resolve the source. Note that

ambiguity lobes exist in Figs. 1(a)–1(c), which is inevitable

for 1-D hydrophone arrays.

In Figs. 1(d)–1(f), we show the DOA estimation results

of the same sources as in Figs. 1(a)–1(c) using the vector-

sensor ULA. Even with vector-sensor array measurements,

the ambiguity lobes are not fully suppressed in Fig. 1(d),

which implies that DAS is not effective for bearing ambiguity

rejection. On the contrary, SPICE resolves all sources and

eliminates the ambiguity lobes. Note that in spite of the fact

that the covariance matrix in Eq. (60) is different from the

approximate noise model in Eq. (21), the SPICE algorithm

still provides superior resolution and sidelobe suppression,

which also verifies its robustness in practical applications.

Figure 1(f) again shows the fast implementation yields identi-

cal result as the direct implementation in Fig. 1(e).

Figure 2 compares the computational time required by

the direct implementation and the fast implementation of

SPICE on (a) conventional hydrophone ULA and (b) vector-

sensor ULA for different number (M) of sensors. The simu-

lations are implemented in MATLAB (The MathWorks, Inc.,

Natick, MA) using only one core of a workstation with an

eight-core 2.83 GHz CPU and 8 GB RAM. Both the ULA

and the vector-sensor ULA collect N¼ 10 M snapshots. The

number of angular scanning points is K¼ 10 M, the SNR is

fixed to be 5 dB and 40 SPICE iterations30 are performed in

Figs. 2(a) and 2(b). For a large value of M, the fast imple-

mentations provide substantial time reduction compared

with the direct implementations, which makes the fast imple-

mentations especially attractive for high resolution source

localization applications. Note that the computational com-

plexity reduction in the vector sensor ULA scenario is less

dramatic than that in the hydrophone ULA scenario. This is

due to the fact that the displacement rank of the covariance

matrix ~R
�1

DM of the vector-sensor ULA is 2D instead of 2 for

R�1
M in the hydrophone ULA, which increases the computa-

tional costs for the generators of the inverse of SPICE covar-

iance matrix and the covariance matrix-vector products.

VII. CONCLUSIONS

We have explored the DOA estimation problem using

the SPICE algorithm with hydrophone ULAs and vector-

sensor ULAs for the passive sonar applications. The SPICE

algorithm is demonstrated in the simulations to possess ad-

vantageous properties, such as increased ability to resolve

closely spaced sources and competence in rejection of bear-

ing ambiguities in the vector-sensor array scenarios. Fast

implementations for both hydrophones ULAs and vector-

sensor ULAs are proposed: The computational complexity

has been reduced by exploiting the Toeplitz/block Toeplitz

matrix structure in the SPICE covariance matrix and by uti-

lizing FFT/IFFT to compute spectral estimates. In the simu-

lations, it has been shown that a significant computational

efficiency increase is obtained with no loss in performance.
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APPENDIX A: COMPUTING THE GENERATORS
wt AND at IN TABLE II

For t¼ 2,…, M � 1, plugging Eq. (15) into the defini-

tion of wt yields:



wt ¼ �R�1
t rt

¼ � R�1
t�1 0

0 0

" #
þ 1

at�1

�w�t�1

1

� �
�wT

t�1; 1
� �( )

rt�1

r�t

� �

¼
wt�1

0

� �
� wt�1

at�1

�w�t�1

1

� �
; (A1)

where wt�1D�wT
t�1rt�1 þ r�t :

Similarly, plugging Eq. (A1) into the definition of at

yields:

at � at�1¼ rtwt � rt�1wt�1

¼ rH
t�1; r�t

� � wt�1

0

� �
� 1

at�1

�w�t�1

1

� �
wt�1

� �

�rt�1wt�1 ¼ �
1

at�1

rH
t�1 �w�t�1 þ r�t

� �
wt�1

¼ � 1

at�1

wH
t�1

wt�1 ¼ � wt�1j j2=at�1: (A2)

Hence, the generators are computed iteratively as detailed in

Table II.

APPENDIX B: PROOF OF LEMMA 1

1. Proof of Eq. (53)

Using Eq. (50), for m¼ 2,…, M � 1, we have

�ADm ¼ JDm
�B�DmJD: (B1)

As JDJT
D ¼ ID the following equation holds:

�ADm
�AH

Dm ¼ JDm
�BDm

�BT
DmJDm: (B2)

From Eqs. (B2) and (42),

~R
�1

DmJDm ¼
0 0

~R
�1

Dðm�1ÞJDðm�1Þ 0

� �
þ JDm

�B�Dm
�BT
Dm: (B3)

From Eq. (46) and using the relation JDmR̂DmJD ¼ �R�Dm,

BDm ¼ �~R
�1

DmR̂Dm ¼ �~R
�1

DmJDmðJDmR̂DmJDÞJD

¼ �~R
�1

DmJDmR̂�DmJD: (B4)

Substitution of Eqs. (B3) into (B4) and using the fact that

�R�Dm ¼ �RH
D m�1ð Þ RT

M

h iT
,

BD ¼
0

�~R
�1

Dðm�1ÞJDðm�1Þ �R�Dðm�1ÞJD

" #

�JDm
�B�Dm

�BT
Dm

�R�Dðm�1ÞJD;

¼
0

BDðm�1Þ

" #
� JDm

B�Dðm�1Þ
ID

� �
Xm; (B5)

where Xm ¼ D��m�1 Rm þ BT
D m�1ð Þ

�R�D m�1ð Þ

h i
JD. Hence Eq.

(53) is proved.

2. Proof of Eq. (54)

From Eq. (48) and using Eq. (53),

Dm¼R0þR̂H
DmBDm

¼R0þR̂H
Dm

0

BD m�1ð Þ

" #
�R̂H

DmJDm

B�DðDABCm�1Þ
ID

� �
Xm

¼R0þR̂H
Dðm�1ÞBD m�1ð Þ�JDðR�mþ�RT

Dðm�1ÞB�Dðm�1ÞÞXm;

(B6)

where the last equality uses the relations that R̂H
DmJDm

¼ JDR̂T
Dm and �RDm ¼ �RT

D m�1ð ÞR
H
m

h iT
. Consequently,

Dm ¼ Dm�1 � XH
mDT

m�1Xm: (B7)

APPENDIX C: BLOCK TOEPLITZ MATRIX-VECTOR
PRODUCT WITH D 3 1 BLOCKS

This part focuses on computing a matrix-vector product

Tz, where T is a DM�M block Toeplitz matrix with each

block being a D� 1 column vector and z is an arbitrary

M� 1 vector, z¼ [z0, z1,…, zm�1]T,

TD

t0

t1 t0

..

. ..
. . .

.

tM�1 tM�2 � � � t0

2
6664

3
7775;

where ti ¼D ti;0;ti;1; :::; ti;D�1

� �T
, i¼ 0… D – 1.

Let [r0, r1,., rM–1]T denote the product:

r0

r1

..

.

rM�1

2
6664

3
7775 ¼

t0

t1

..

.

tM�1

t0

..

.

tM�1

. .
.

… t0

2
6664

3
7775

z0

z1

..

.

zM�1

2
6664

3
7775; (C1)

where ri ¼D ri;0;ri;1; :::; ri;D�1

� �T
, i¼ 0,.,M� 1.

The multiplication in Eq. (C1) can be decomposed into

a series of Toeplitz matrix-vector products, which can be

computed efficiently using FFT.

Select the jth element in each of the column vectors

r0,…, rM�1, and the jth element in each of the t0,…,tM–1,

j¼ 0,…, D � 1. From Eq. (C1),

r0;j

r1;j

..

.

rM�1;j

2
6664

3
7775 ¼

t0;j

t1;j

..

.

tM�1;j

t0;j

..

.

tM�2;j

. .
.

… t0;j

2
6664

3
7775

z0

z1

..

.

zM�1

2
6664

3
7775 (C2)

The right-hand side of Eq. (C2) is a lower triangular Toeplitz

matrix-vector product, which can be computed efficiently by

FFT (detailed in Appendix E).



APPENDIX D: BLOCK TOEPLITZ MATRIX-VECTOR
PRODUCT WITH 1 3 D BLOCKS

Consider the matrix-vector product SHy, where SH is an

M�DM block Toeplitz matrix with each block being a

1�D row vector and y is an arbitrary DM� 1 column vec-

tor. Partition y into M D-dimensional column vectors:

y ¼D y0; y1;…; yM�1

� �T
, where yi ¼

D
yi;0;yi;1; :::; yi;D�1

� �T
,

i¼ 0,…,M � 1.

The corresponding block Toeplitz matrix SH is similarly

partitioned as

SH ¼D
sH

0 sH
1 � � � sH

M�1

sH
0 � � � sH

M�2

. .
. ..

.

sH
0

2
6664

3
7775; (D1)

where sH
i , i¼ 0…(M� 1), is a row vector,

sH
i ¼

D
si;0;si;j;…; sj;D�1

� �
. Let [z0,., zM� 1]T denote the matrix-

vector product:

z0

z1

..

.

zM�1

2
6664

3
7775 ¼

sH
0 sH

1 � � � sH
M�1

sH
0 � � � sH

M�2

. .
. ..

.

sH
0

2
6664

3
7775

y0

y1

..

.

yM�1

2
6664

3
7775 (D2)

Note that Eq. (D2) can be decomposed into a series of Toe-

plitz matrix-vector products: Select the jth element in each

of the s0,…,sM-1 and y0,…,yM-1, and define

z0;j; z1;j; :::; zM�1;j

� �T
; j ¼ 0; :::;D� 1; as

z0;j

z1;j

..

.

zM�1; j

2
6664

3
7775 ¼

s0;j s1;j � � � sM�1;j

s0;j � � � sM�2;j

. .
. ..

.

s0;j

2
6664

3
7775

y0;j

y1;j

..

.

yM�1;j

2
6664

3
7775: (D3)

Note that the right-hand side of Eq. (D3) can be efficiently

computed using the FFT (detailed in Appendix E). The

results in Eq. (D2) can be obtained by a series of summa-

tions: zk ¼
PD�1

j¼0 zk;j; k¼ 0,…,M � 1.

APPENDIX E: TOEPLITZ MATRIX-VECTOR PRODUCT

A circulant matrix C is a special type of Toeplitz matrix

and it can be diagonalized by a discrete Fourier transform

(DFT) matrix Fn, i.e., C¼F�nDiag(Fnc)Fn. where c is the first

column of the circulant matrix, and Fn is the n-point DFT

matrix. An important property of a circulant matrix is that

the circulant matrix-vector product can be computed using

FFT and IFFT. For example, the product y¼Cx can be com-

puted as y ¼ F�n Fncð Þ � Fnxð ÞÞð .

Consequently, the Toeplitz matrix-vector product can be

computed by first augmenting the Toeplitz matrix into a cir-

culant matrix, then performing the FFT based multiplication

and retaining only the relevant part.
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