
Fast Implementation of Sparse Iterative
Covariance-based Estimation for Array Processing

Qilin Zhang, Habti Abeida, Ming Xue, William Rowe and Jian Li
Department of Electrical and Computer Engineering
University of Florida, Gainesville, FL, 32611, USA

Abstract—Fast implementations of the SParse Iterative
Covariance-based Estimation (SPICE) algorithm are presented
for source localization in passive sonar applications. SPICE
is a robust, user parameter-free, high-resolution, iterative and
globally convergent estimation algorithm for array processing.
SPICE offers superior resolution and lower sidelobe levels for
source localization at the cost of a higher computational complex-
ity compared to the conventional delay-and-sum beamforming
method. It is shown in this paper that the computational
complexity of the SPICE algorithm can be reduced by exploiting
the Toeplitz structure of the array output covariance matrix using
the Gohberg-Semencul factorization. The fast implementations
for both the hydrophone uniform linear array (ULA) and the
vector-sensor ULA scenarios are proposed and the computational
gains are illustrated by numerical simulations.

Index Terms—Sparse Iterative Covariance-based Estimation,
direction-of-arrival, fast implementation, Gohberg-Semencul fac-
torization, vector-sensor.

I. INTRODUCTION

The direction-of-arrival (DOA) source localization problem
is directly applicable to many fields including radar, sonar,
communications, the geological and biomedical sciences. The
goal of the DOA problem in passive sonar applications is to
accurately locate all sources with an array of hydrophones.
The traditional delay-and-sum (DAS) beamformer suffers in
performance due to high sidelobes, low resolution. Many
high-resolution methods such as Capon and MUltiple SIgnal
Classification (MUSIC), are typically sensitive to modeling
errors, require a large number of snapshots, and can even fail
if coherent sources are present [1].

Recently, a new semi-parametric algorithm referred to as
SParse Iterative Covariance-based Estimation (SPICE), has
been proposed [2], [3]. SPICE offers superior resolution and
low sidelobe levels while retaining robustness against cor-
related sources [3]. It is also a user parameter-free method
that is guaranteed to converge globally. SPICE suffers from
higher computational complexity when compared with the
DAS method.

In this paper, an efficient implementation of SPICE based
on the Gohberg-Semencul (G-S) factorization is presented,
which is inspired by previous fast implementations on Capon
and Amplitude and Phase EStimation (APES) methods [4],
[5], [6], [7], [8]. The Toeplitz matrix structure produced by
the G-S factorization of the inverse of the SPICE covariance

This work was supported in part by the Office of Naval Research (ONR)
under Grant No. N00014- 10-1-0054, the National Science Foundation (NSF)
under Grant No. ECCS-0729727, and the SMART Fellowship Program.

matrix R−1
M is exploited while applying a Levinson-Durbin

type algorithm (see e.g., [9]).
A typical vector-sensor array measures both acoustic par-

ticle velocities and acoustic pressure. It is capable of resolv-
ing bearing ambiguity of the linear hydrophone arrays and
simultaneously estimating azimuth and elevation angles of
signals of interest (SOIs) at the cost of a higher dimensionality
(i.e., higher computational complexity, [10], [11]). The fast
implementation of SPICE is also extended to the vector-
sensor array scenario by exploiting the block Toeplitz structure
(e.g., [12]) of the array output covariance matrix using G-
S type factorization based on a generalized Levinson-Durbin
algorithm (LDA) and fast Fourier transform (FFT).

Notation: Vectors and matrices are denoted by boldface
lowercase and boldface uppercase letters, respectively, ‖ · ‖F

denotes the Frobenius norm, ⊗ denotes the Kronecker matrix
product, Diag(p0, . . . , pK−1) denotes a diagonal matrix with
p0, . . . , pK−1 as its diagonal elements. (·)T , (·)∗ and (·)H de-
note the transpose, complex conjugate and conjugate transpose
of a vector or matrix, respectively. Ip and Jp denote identity
matrix and exchange matrix of dimension p× p, respectively.

II. DATA MODEL AND PROBLEM FORMULATION

Let a uniform linear array (ULA) of M omnidirectional
sensors with half-wavelength inter-element spacing receive
narrowband signals impinging from the sources with unknown
locations. Let Ω denote the set of possible locations, and θ be
a generic location parameter. Also, let {θk}

K−1
k=0 denote a grid

that covers Ω. The M × 1 complex snapshot vectors can be
modeled as (e.g., [2])

yM (n) = AMx(n) + e(n), n = 1, . . . , N, (1)

where AM � [aM (θ0), . . . ,aM (θK−1)] is
the steering matrix where each steering vector
aM (θk) � [1, ejπ sin(θk), . . . , ejπ(M−1) sin(θk)]T is
parameterized by the location parameter θk. The vector
x(n) � [x0(n), . . . ,xK−1(n)]T contains the K unknown
complex signals, and e(n) is the noise term. We assume
that E

[
e(n)eH(n̄)

]
= σIMδn,n̄, where δn,n̄ = 1 if n = n̄

and 0 otherwise. Let us further assume that e(n) and x(n)
are independent, thus E

[
x(n)xH(n̄)

]
= PKδn,n̄, where

PK � Diag(p0, . . . , pK−1) and pk denotes the unknown
signal power at θk. This leads to the covariance matrix of
yM (n) (e.g., [2], [3])

RM � AMPKAH
M + σIM . (2)

Asilomar 2011

This covariance matrix is traditionally estimated by the
sample covariance matrix R̂M � 1

N YYH where Y �

[yM (1), . . . ,yM (N)].

III. THE SPICE ALGORITHM

SPICE is a recently introduced method for sparse signal
recovery in linear models derived from a robust covariance
fitting criterion. It does not depend on any hyperparameters
and achieves better performance than the well-known methods
such as MUSIC [2], [3]. In the particular case of spatially and
temporally white uniform noise (i.e., E

[
e(n)eH(n)

]
= σIM

), the iterative steps of the SPICE method (SPICE+ as named
in [3]) are summarized as follows:

Initialize {p
(0)
k }K−1

k=0 using DAS. At the ith iteration,

1) Update R
(i)
M using signal power estimates {p

(i−1)
k }K−1

k=0

and the noise power estimate σ(i−1) from the (i − 1)th
iteration:

R
(i)
M = AMP

(i−1)
K AH

M + σ(i−1)IM , (3)

where P
(i−1)
K � Diag(p

(i−1)
0 , . . . , p

(i−1)
K−1).

2) Using the most recent obtained R
(i)
M in (3), noise

power estimate σ(i−1) and signal power estimates
{p

(i−1)
k }K−1

k=0 , compute the auxiliary variable ρ(i) ,

ρ(i) =

K−1∑
k=0

ω
1/2
k p

(i−1)
k ‖ aH

M (θk)R
(i)−1

M R̂
1/2
M ‖F

+γ1/2σ(i−1) ‖ R
(i)−1

M R̂
1/2
M ‖F . (4)

3) Estimate the noise power:

σ(i) = σ(i−1) ‖ R
(i)−1

M R̂
1/2
M ‖F

γ1/2ρ(i)
. (5)

4) Update {p
(i)
k }K−1

k=0 using ρ(i) and σ(i),

p
(i)
k = p

(i−1)
k

‖ aH
M (θk)R

(i)−1

M R̂
1/2
M ‖F

ω
1/2
k ρ(i)

, (6)

for k = 0, 1, . . . , K − 1. The quantities {ωk}
K+M−1
k=0 are

constants over all iterations, and they are given by:

ωk � aH
M (θk)R̂−1

M aM (θk)/N, k = 0, . . . , K − 1,

ωK+k−1 � R̂−1
M (k, k)/N, k = 1, . . . , M,

where R̂−1
M (k, k) denotes the element at kth row and kth

column of the matrix R̂−1
M . γ is given by γ �

∑K+M−1
k=K ωk.

The terms ‖ R
(i)−1

M R̂
1/2
M ‖F and ‖ aH

M (θk)R
(i)−1

M R̂
1/2
M ‖F

listed in the above iterative steps ((4) - (6)) have simpler forms:

‖ R
(i)−1

M R̂
1/2
M ‖2

F =
1

N

N∑
n=1

tr
[
R

(i)−1

M yM (n)yH
M (n)R

(i)−1

M

]

=
1

N

N∑
n=1

|R
(i)−1

M yM (n)|2, (7)

and similarly,

‖ aH
M (θk)R

(i)−1

M R̂
1/2
M ‖2

F =
1

N

N∑
n=1

|aH
M (θk)R

(i)−1

M yM (n)|2.

(8)

IV. FAST IMPLEMENTATION FOR UNIFORM LINEAR

ARRAYS OF HYDROPHONES

Based on the G-S factorization (e.g., [13]), the inverse
of SPICE covariance matrix RM can be represented by a
series of Toeplitz matrices. This factorization improves the
implementation efficiency of the matrix-vector product (i.e.,
R

(i)−1

M yM (n)) in (7) and (8). Moreover, if the spatial fre-
quency f (f � sinθ) is uniformly sampled, AM is the upper
part of an FFT matrix.

A. Fast computation of the covariance matrix RM

Define RM � AMPKAH
M . Since the steering matrix AM

is a Vandermonde matrix, RM is a Hermitian Toeplitz matrix
and it is fully specified by its first column, which is given by:

RM = AMPKAH
M =

K−1∑
k=0

pkaM (θk)aH
M (θk)

=

⎡
⎢⎢⎢⎣

r0 r1 . . . rM−1

r∗1 r0 . . . rM−2

...
...

. . .
...

r∗M−1 r∗M−2 . . . r0

⎤
⎥⎥⎥⎦ . (9)

From (9), and assume that spatial frequency is uniformly
sampled, each element in (9) is specified by:

rm =

K−1∑
k=0

pke−j2πmk/K , m = 1, . . . , M − 1, (10)

which indicates that {rm}M−1
m=0 are the first M elements of the

K-point FFT of {pk}
K−1
k=0 .

By retaining the first M elements of the FFT result, RM

can be computed using FFT within O(Klog2(K)) flops.
Consequently, the first column of RM can be obtained by
adding σ to r0 (see (3)).

B. Fast Computation of R−1
M yM (n)

Once the first column of RM is available, the vector dM (n)
involved in the linear equation

RM (n)dM (n) = yM (n), (11)

appeared in (7) and (8) can be solved using the G-S factor-
ization and the LDA.

Consider the partitioning of RM :

RM =

[
r0 + σ rH

M−1

rM−1 RM−1

]
(12)

=

[
RM−1 ř∗M−1

řT
M−1 r0 + σ

]
, (13)

where rM−1 � [r∗1 , r∗2 , . . . , r
∗
M−1]

T , and řM−1 denotes
the reversed row ordering version of rM−1, i.e., řM−1 =
JM−1rM−1 = [r∗M−1, . . . , r

∗
2 , r∗1]T .

The G-S formula (see e.g., [4], [14]) of R−1
M is given by:

R−1
M = LM (t1,ZM)LH

M (t1,ZM)

− LM (t2,ZM)LH
M (t2,ZM), (14)

where ZM
1is an M × M matrix with ones on the

first sub-diagonal and zeros everywhere else, t1 =

1In MATLAB: ZM is generated by diag (ones(M, 1),−1).

TABLE I
LEVINSON-DURBIN ALOGRITHM FOR GENERATORS wt AND αt .

Initialization: w1 = −
r
∗

1

r0+σ
and α1 = r0 + σ + r1w1

For t = 2, . . . ,M − 1

ψt−1 = wT

t−1Jt−1rt−1 + r∗
t

wt =

[
wt−1

0

]
− 1

αt−1

[
Jt−1w

∗

t−1

1

]
ψt−1

αt = αt−1 − |ψt−1|2/αt−1

1√
αM−1

[1, wM−1]
T , t2 = 1√

αM−1

[
0, JM−1w

∗
M−1

]T
, and

LM (t,Z) �

[
t,Zt, · · · ,ZM−1t

]
denotes a Krylov matrix.

The recursive LDA algorithm to compute the generators
wM−1 and αM−1 is summarized by Table I and proved in
detail in [15].

Note that in (14) both LM (t1,ZM) and LM (t2,ZM) are
lower triangular Toeplitz matrices, which makes possible the
computation of matrix vector product R−1

M yM (n) in (11)
using FFT ([15]).

The fast implementation of SPICE for hydrophone ULAs is
summarized as follows:

For each iteration of SPICE, do the following:
1) Given {pi−1

k }K−1
k=0 from the previous iteration, compute

{rm}M−1
m=0 in (10) using FFT with O(K log2 K) flops.

2) Given {rm}M−1
m=0 , compute the generators wM−1 and

αM−1 using LDA detailed in Table I with O(M2) flops.

3) Given the generators, calculate {R
(i)−1

M yM (n)}N
n=1 in

(7) using FFT with O(MN log2 M) flops.

4) Given {R
(i)−1

M yM (n)}N
n=1, calculate

{aH
M (θk)R

(i)−1

M yM (n)}N
n=1,

K−1
k=0 in (8) using FFT

with O(NK log2 K) flops.

5) Given {R
(i)−1

M yM (n)}N
n=1 and

{aH
M (θk)R

(i)−1

M yM (n)}N
n=1,

K−1
k=0 , calculate

‖ R
(i)−1

M R̂
1/2
M ‖F in (7) and ‖ aH

M (θk)R
(i)−1

M R̂
1/2
M ‖F

in (8) with O(MN) and O(NK) flops, respectively.

6) Given ‖ R
(i)−1

M R̂
1/2
M ‖F and ‖ aH

M (θk)R
(i)−1

M R̂
1/2
M ‖F ,

calculate ρ(i) in O(K) flops.

7) Given ‖ R
(i)−1

M R̂
1/2
M ‖F , calculate σ(i) in O(1) flops.

8) Given ‖ aH
M (θk)R

(i)−1

M R̂
1/2
M ‖F , update {p

(i)
k }K−1

k=0 in
O(K) flops.

V. FAST IMPLEMENTATION OF SPICE FOR UNIFORM

LINEAR ARRAYS OF VECTOR SENSORS

A. Computation of the Block Toeplitz Covariance Matrix in
Vector-sensor ULA

A vector-sensor array provides extra directional motion
information such as acoustic particle velocity or acceleration
in addition to the acoustic pressure measurements. A typi-
cal measurement from a single vector-sensor consists of the
acoustic pressure and the orthogonal directional velocities; and
it can be denoted as a scalar-vector product p · h (see, e.g.,
[10], [11], [16])), where

h �

[
1, cosφ cos θ, cosφ sin θ, sin φ

]T

, (15)

and φ, θ denote the elevation and azimuth angles, respectively.
In the general case, denote h in (15) as,

hD(θi) �

[
1, h2(θi), . . . hD(θi)

]T

. (16)

where hd(θi) denotes the dth element in hD(θi), d =
2, . . . , D, and θi denotes a generic bearing parameter (the
vector (θ, φ) in the special case of (15)). The steering vector
(aDM) of a vector-sensor array is related to the steering vector
(aM) of the hydrophone array (which consists of only the
hydrophones within the vector-sensor array) as:

aDM (θi) = aM (θi) ⊗ hD(θi). (17)

Consider an M -element vector-sensor array, where each el-
ement consists of one hydrophone and (D − 1) acoustic
velocity sensors. Each measurement from this array forms a
DM ×1 column vector yDM , and the array output covariance
matrix is a DM × DM matrix R̃DM . Analogous to the
hydrophone scenario, this covariance matrix is estimated by
the sample covariance matrix R̂DM . In the SPICE algorithm,
the covariance matrix R̃DM is updated during each iteration
whenever new signal power estimates {pk}

K−1
k=0 are generated,

R̃DM =

K−1∑
k=0

pkaDM (θk)aH
DM (θk) + σIDM (18)

=

⎡
⎢⎢⎢⎢⎢⎣

R0 R1 R2 . . . RM−1

R∗
1 R0 R1 . . . RM−2

R∗
2 R∗

1 R0
...

...
...

. . .
...

R∗
M−1 R∗

M−2 R0

⎤
⎥⎥⎥⎥⎥⎦ + σIDM ,

(19)

Analogous to (10), for m = 0, . . . , M − 1,

Rm =
K−1∑
k=0

pk

(
hD(θk)hT

D(θk)
)
e−j2πmk/K , (20)

From (16) and (20), each block Rm is a symmetric matrix,
and it is possible to calculate its elements using FFT.

B. Displacement Representation of R̃−1
DM

Given the block Toeplitz covariance matrix R̃DM , the
generalized LDA can be performed to compute the generators
of displacement �

ZM ,ZT

M

R̃−1
DM .

According to the Toeplitz block structure of R̃DM in (19),
it can be expressed as

R̃DM =

[
R0 R̄H

D(M−1)

R̄D(M−1) R̃D(M−1)

]
(21)

=

[
R̃D(M−1) R̂D(M−1)

R̂H
D(M−1) R0

]
, (22)

where R̄Dm and R̂Dm denote block matrix of dimen-
sion Dm × D: R̄Dm = [RH

1 , . . . ,RH
m]T and R̂Dm =

JDmR̄∗
DmJD, m = 1, . . . , M − 1.

Application of the matrix inversion lemma (e.g., [17]) for
partitioned matrices to (21) and (22) yields, respectively:

TABLE II
L-D-TYPE ALGORITHM FOR GENERATORS BDm AND Δm .

Initialization BD1 = R
−1
0 R

∗

1 and Δ1 = R0 − R
H

1 R
−1
0 R1

For m = 2, . . . ,M − 1

Ωm = Δ
−∗

m−1

[
Rm + BT

D(m−1)
R̄∗

D(m−1)

]
JD

BDm =

[
0

BD(m−1)

]
+JDm

[
B∗

D(m−1)

ID

]
Ωm

Δm = Δm−1 − ΩH
mΔT

m−1Ωm

R̃−1
DM =

[
R̃−1

D(M−1) 0

0 0

]
+ B̄DM B̄H

DM (23)

=

[
0 0

0 R̃−1
D(M−1)

]
+ ĀDM ĀH

DM , (24)

where both ĀDM and B̄DM are block matrices of dimension
DM × M , given by:

ĀDM �

[
IM

AD(M−1)

]
Q

−1/2
M−1, (25)

B̄DM �

[
IM

BD(M−1)

]
Δ

−1/2
M−1, (26)

respectively, where

AD(M−1) = −R̃−1
D(M−1)R̄D(M−1), (27)

BD(M−1) = −R̃−1
D(M−1)R̂D(M−1), (28)

QM−1 = R0 + R̄H
D(M−1)AD(M−1), (29)

ΔM−1 = R0 + R̂H
D(M−1)BD(M−1). (30)

By the persymmetry property of R̃DM (e.g., [18], [19]),

JDmR̃DmJDm = R̃T
Dm, m = 1, . . . , M, (31)

the matrices BD(M−1) and AD(M−1), ΔM−1 and QM−1 are,
respectively, related through:

AD(M−1) = JD(M−1)B
∗
D(M−1)JD, (32)

QM−1 = JDΔT
M−1JD. (33)

By using (23)–(33), the displacement representation (DR)
of R̃−1

DM takes the following form:

�
ZM⊗ID,ZT

M
⊗ID

R̃−1
DM =

ĀDM ĀH
DM − (ZM ⊗ ID)B̄DM B̄H

DM (ZT
M ⊗ ID). (34)

Note that the generators BD(M−1) and ΔM−1 of R̃−1
DM

involved in (34) are all block matrices related to the forward
predictor (23)–(33). These generators can be computed itera-
tively by using the L-D-type algorithm listed in Table II ([15]).

Once the DR of the matrix R̃−1
DM is obtained, the G-

S factorization of R̃−1
DM can be subsequently computed.

Let {ti
DM}D

i=1 denote the D columns of the ĀDM and
{ti

DM}2D
i=D+1 denote the D columns of (ZM ⊗ ID)B̄DM .

Columns and rows in (34) can be expressed explicitly as
follows:

∇
ZM⊗ID ,ZT

M
⊗ID

R̃−1
DM �

2D∑
i=1

σit
i
DMtiH

DM , (35)

where σi = 1 for i = 1, . . . , D and σi = −1 for i = (D +
1), . . . , 2D.

Given (35), the G-S factorization of R̃−1
DM takes the follow-

ing form:

R̃−1
DM =

M−1∑
j=0

(ZM ⊗ ID)j(∇
ZM⊗ID ,ZT

M
⊗ID

R̃−1
DM)(ZT

M ⊗ ID)j

=

2D∑
i=1

σi

[M−1∑
j=0

(ZM ⊗ ID)j(ti
DMtiH

DM)(ZT
M ⊗ ID)j

]

=

2D∑
i=1

σiLDM (ti
DM ,ZM ⊗ ID)LH

DM (ti
DM ,ZM ⊗ ID),

(36)

where

LDM (ti
DM ,ZM ⊗ ID)

=
[
ti
DM , (ZM ⊗ ID)ti

DM , · · · , (ZM ⊗ ID)M−1ti
DM

]
.

(37)

Due to the fact that LDM (ti
DM ,ZM ⊗ ID) is a DM ×

M lower block triangular Toeplitz matrix, the matrix-vector
product R̃−1

DMyDM can be efficiently computed using FFT
([15]).

The fast implementation of SPICE with vector-sensor ULAs
are summarized as follows:

For each iteration of SPICE, do the following:

1) Given {pi−1
k }K−1

k=0 from the previous iteration, compute
the auxiliary block matrix R̄D(M−1) using a series of
FFT with O(DK log2 K) flops.

2) Given R̄D(M−1), compute the generators BD(M−1) and
ΔM−1 using the generalized LDA with O(DM2) flops.

3) Given the generators, calculate R̃−1
DMR̂

1/2
DM using FFT

with O(DM2 log2 M) flops.
4) Given R̃−1

DMR̂
1/2
DM , calculate aDM (θk)R−1

DMR̂
1/2
DM , for

k = 0, 1, . . . , K − 1, using FFT with O(DMK log2 K)
flops.

5) Given R̃−1
DMR̂

1/2
DM , calculate ‖ R̃−1

DMR̂
1/2
DM ‖F in

O(D2M2) flops.
6) Given aDM (θk)R̃−1

DMR̂
1/2
DM , k = 0, . . . , K − 1 and ‖

R̃−1
DMR̂

1/2
DM ‖F , calculate ρ(i) in O(K) flops.

7) Given ‖ R̃−1
DMR̂

1/2
DM ‖F , calculate σ(i) in O(1) flops.

8) Given aDM (θk)R̃−1
DMR̂

1/2
DM , k = 0, . . . , K − 1, update

{p
(i)
k }K−1

k=0 in O(K) flops.

VI. NUMERICAL EXAMPLES

In this section, numerical examples are provided to compare
the computational complexity of the direct implementation and
the fast implementations of the SPICE algorithm. Without any
loss of generality, only the estimation of the azimuth angle is
considered herein.

Consider five uncorrelated sources located at θ1 = −44.4◦,
θ2 = −36.9◦, θ3 = −32.7◦, θ4 = 11.5◦ and θ5 =

0 200 400 600
0

50

100

150

200

250

300
Hydrophone array

Sensor points

T
im

e
(s

ec
)

SPICE
SPICE−GS

(a)

0 200 400 600
0

2000

4000

6000

8000

10000

12000
Vector Sensor array

Sensor points

T
im

e
(s

ec
)

SPICE
SPICE−GS

(b)

Fig. 1. Computational time comparison of the direct implementation of
SPICE and fast implementations (SPICE-GS) for (a) hydrophone ULA and
(b) vector-sensor ULA against the number of sensors M in the array, with
N = 10M available snapshots and K = 10M angular scanning points.

53.1◦, respectively. The corresponding signals are x1(n) =
10eiξ1(n), x2(n) = 3eiξ2(n), x3(n) = 10eiξ3(n), x4(n) =
1.8eiξ4(n) and x5(n) = eiξ5(n), where n ∈ {1, . . . , N}
denotes the index of the available snapshots. The phase
values {ξ1(n)}, . . . , {ξ5(n)} are independent and identically
distributed random variables with uniform distribution over
[0, 2π). The noise terms are assumed to be circularly symmet-
ric complex Gaussian random variables that are spatially and
temporally white.

Figure 1 compares the computational time required by the
direct implementation and the fast implementation of SPICE
on (a) conventional hydrophone ULA and (b) vector-sensor
ULA for arrays with different number (M) of sensors. The
simulations are implemented in MATLAB R© using only one
core of a workstation with an 8-core 2.83 GHz CPU and 8
GB RAM. Both the ULA and the vector-sensor ULA collect
N = 10M snapshots. The number of angular scanning points
is K = 10M , the Signal-to-noise ratio (SNR) is fixed at
5 dB and 40 SPICE iterations are performed. For a large
value of M , the fast implementations provide significant time
reduction compared with the direct implementations, which
makes the fast implementation especially attractive for high
resolution localization applications. Note that the computa-
tional complexity reduction in the vector sensor ULA scenario
is less dramatic than that in the hydrophone ULA scenario.

The displacement rank of the covariance matrix R̃−1
DM of

the vector-sensor ULA is 2D instead of 2 in R−1
M as in the

hydrophone ULA case.

VII. CONCLUSIONS

We have explored the DOA source localization problem
for hydrophone ULAs and vector-sensor ULAs. The SPICE
algorithm was reviewed and its fast implementations have
been presented. The computational complexity of SPICE was
reduced by exploiting the Toeplitz/block Toeplitz matrix struc-
ture in the SPICE covariance matrix and by utilizing FFT to
compute spectral estimates for ULAs. In the simulations, it has
been shown that a significant computational efficiency increase
is obtained.

REFERENCES

[1] H. L. Van Trees, Optimum Array Processing: Part IV of Detection,
Estimation, and Modulation Theory, pp. 1194, 599–603. New York,
NY: John Wiley & Sons, 2002.

[2] P. Stoica, P. Babu, and J. Li, “New Method of Sparse Parameter
Estimation in Separable Models and Its Use for Spectral Analysis of
Irregularly Sampled Data,” IEEE Transactions on Signal Processing,
vol. 59, pp. 35–47, Jan 2011.

[3] P. Stoica, P. Babu, and J. Li, “SPICE: A Sparse Covariance-Based
Estimation Method for Array Processing,” IEEE Transactions on Signal
Processing, vol. 59, pp. 629–638, Feb 2011.

[4] B. Musicus, “Fast MLM power spectrum estimation from uniformly
spaced correlations,” IEEE Transactions on Acoustics, Speech and Signal
Processing, vol. 33, pp. 1333–1335, Oct 1985.

[5] Z.-S. Liu, H. Li, and J. Li, “Efficient implementation of Capon and
APES for spectral estimation,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 34, pp. 1314–1319, Oct 1998.

[6] T. Ekman, A. Jakobsson, and P. Stoica, “On the efficient implementation
of the Capon spectral estimator,” Proceedings of European Signal
Processing Conference, Tampere, Finland, September 4-8 2000.

[7] A. Jakobsson, J. S. L. Marple, and P. Stoica, “Computationally effi-
cient two-dimensional Capon spectrum analysis,” IEEE Transactions on
Signal Processing, vol. 48, pp. 2651–2661, Sep 2000.

[8] G.-O. Glentis, “A fast algorithm for APES and Capon spectral estima-
tion,” IEEE Transactions on Signal Processing, vol. 56, pp. 4207–4220,
Sep 2008.

[9] P. Stoica and R. L. Moses, Spectral Analysis of Signals, pp. 99–102.
Upper Saddle River, NJ: Prentice-Hall, 2005.

[10] A. Nehorai and E. Paldi, “Acoustic vector-sensor array processing,”
IEEE Transactions on Signal Processing, vol. 42, pp. 2481–2491, Sep
1994.

[11] M. Hawkes and A. Nehorai, “Acoustic vector-sensor beamforming and
Capon direction estimation,” IEEE Transactions on Signal Processing,
vol. 46, pp. 2291 –2304, Sep 1998.

[12] H. Akaike, “Block Toeplitz matrix inversion,” SIAM Journal on Applied
Mathematics, vol. 24, no. 2, pp. 234–241, 1973.

[13] I. C. Gohberg and A. Semencul, “On inversion of finite-section Toeplitz
matrices and their continuous analogues,” Mat. Issled. Kishinev, pp. 201–
224, 7:2 (1972) (In Russian).

[14] J. Jain, “An efficient algorithm for a large Toeplitz set of linear equa-
tions,” IEEE Transactions on Acoustics, Speech and Signal Processing,
vol. 27, pp. 612–615, Dec 1979.

[15] Q. Zhang, H. Abeida, M. Xue, W. Rowe, and J. Li, “Fast Implementation
of Sparse Iterative Covariance-based Estimation for Source Localiza-
tion,” to appear in the Journal of the Acoustical Society of America.

[16] A. J. Poulsen, “Robust vector sensor array processing and performance
analysis,” Ph.D. dissertation, Massachusetts Institute of Technology,
Boston, Massachusetts, pp. 25–38, 2009.

[17] D. A. Harville, Matrix Algebra from a Statistician’s Perspective, pp. 88
–103. New York, NY: Springer, Inc., 1997.

[18] M. Wax and T. Kailath, “Efficient inversion of Toeplitz-block Toeplitz
matrix,” IEEE Transactions on Acoustics, Speech, and Signal Process-
ing, vol. 31, pp. 1218–1221, Oct 1983.

[19] S. Zohar, “Toeplitz matrix inversion: The algorithm of W. F. Trench,”
Journal of the Association for Computing Machinery, vol. 16, pp. 592–
601, Oct 1969.

