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Abstract. Weakly-supervised temporal action localization has attracted
much attention among researchers in video content analytics, thanks
to its relaxed requirements of video-level annotations instead of frame-
level labels. However, many current weakly-supervised action localiza-
tion methods depend heavily on naive feature combination and empirical
thresholds to determine temporal action boundaries, which is practically
feasible but could still be sub-optimal. Inspired by the momentum term,
we propose a general-purpose action recognition criterion that replaces
explicit empirical thresholds. Based on such criterion, we analyze differ-
ent combination of streams and propose the Action Sensitive Extractor
(ASE) that produces action sensitive features. Our ASE sets temporal
stream as main stream and extends with complementary spatial streams.
We build our Action Sensitive Network (ASN) and evaluate on THU-
MOS14 and ActivityNet1.2 with different selection method. Our network
yields state-of-art performance in both datasets.

Keywords: Action localization - Weaky-supervised - Two-stream.

1 Introduction

Temporal action localization (TAL) in untrimmed videos has attracted more
and more attention in recent years, many methods [23,38,14,11,9,28,43,41]
that greatly enhanced performance have been developed. Because labeling ac-
tion boundary in untrimmed video is expensive, some researchers [26, 38,30,
33, 25] proposed to use video-level action annotation to produce snippet level
action localization results, which greatly reduced demand for human laboring
and yield comparable performance. These studies combine Multiple Instance
Learning (MIL) [7] and attention mechanism [38,26,25] with Deep Convolu-
tional Neural Networks (DCNN) to produce clip presentations. Then, action
detection criterions maps clip presentations to Class Activation Sequence (CAS)
which determines which snippet includes action.

However, these weakly-supervised methods share two convenient assumptions
that might be too optimistic in the real world. The first assumption is empir-
ical thresholds to determine temporal action boundaries could be obtained in
a trivial manner. This implicit assumption could be far from reality, given the
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Fig. 1. Tlustration of different strategies to combine two-stream features. (a) Lateral
fusion of two-stream features. (b) Concatenating two-stream features for processing.
(c) Our action sensitive extractor.

diversity of datasets and applications. The second assumption is that straight-
forward fusion strategies are adequate in weakly-supervised TAL because of the
prevailing two-stream networks [3, 32, 39], where CAS is either generated sepa-
rately and fused by weighted average [38, 30, 25], or generated by concatenated
features [26] and [30] regression methods. With the two-stream network, each
stream is independently trained via backpropagation and no interactions happen
between streams. These two strategies are straightforward to implemented but
we argue that there could possibly be a better alternative.

To address these challenges, we design a general-purpose action detection
criterion and an alternative stream fusion strategy. Specifically, we design the ac-
tion detection criterion based on attention mechanism with momentum-inspired
threshold generated in training stage. An analysis in stream combination options
results in the proposed Action Sensitive Extractor(ASE) as shown in Fig. 1.
Inspired by recent literature in spatial and temporal interaction [35,10], the
proposed ASE prudently selects action sensitive features between two streams
and produces activations. In the ASE, we handle spatial and temporal stream
asymmetrically with respect to different sensitivities in actions. With our action
detection criterion and the ASE, we build Action Sensitive Network (ASN)
for Weakly-supervised TAL.

Main contributions of this paper include (1) a comparative analysis on stream
fusion strategies with the proposed Action Sensitive Extractor (ASE), and (2) a
new flexible action localization criterion which generates high quality CAS. The
performance gains of the proposed ASN algorithm are verified on two challenging
public datasets.

2 Related Works

Video Action analyze has been wildly discussed in several years. Most studies
focus on action recognition in trimmed videos. Many novel structures have been
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proposed for videos [15,8,19,3] based on DCNN neural networks [16,17,37].
Two-stream network [32] was one design which employs RGB images and opti-
cal Flow with lateral fusion. Based on two-stream network, temporal segment
network (TSN) [39] was proposed to analyze long-term temporal data. TSN has
been used as backbone in different tasks [43,38] with good performance. To
further leverage optical Flow, [35] proposed a novel structure for optical Flow.
Recent proposed SlowFast Network [10] uses two path way to process videos sim-
ilar to two-stream network. In SlowFast, a fast pathway handles wide temporal
motions and a slow pathway handles rich local details.

Action localization has been greatly improved based on video action ana-
lyze. Many neural architectures and methods [21, 13, 24, 9] have been developed
for supervised learning. However, those studies heavy rely on data annotations
of action sequences, which are expensive to acquire. To incorporate more data in
training, Sun et al. [34] proposed to use web images and video-level annotation
to handle TAL. Moreover, hide and seek [33] discovered how to force network fo-
cus on most discriminating part. UntrimmedNet [38] designed a novel structures
that trains high-quality network on untrimmed videos and proposed a method
which efficiently selects action segments. UntrimmedNet not only provide a good
solution for Localization but is also a good baseline model that generates local
representation. Based on extracted feature representation, AutoLoc [30] discov-
ered an anchor generation and selection standard on feature sequences. W-TALC
[26] and Nguyen et al. [25] discovered feature based networks with different aux-
iliary loss functions and attention mechanism.

3 Action Sensitive Network

In this section, our proposed Action Sensitive Network will be introduced. Sec-
tion 3.1 describes the ASE we proposed. Section 3.2 describes our momentum-
inspired action detection criterion. In the last section, we introduce details of
ASN.

3.1 Action Sensitive Extractor

In this section, we propose models to extract action sensitive features. Our pro-
posal is to train a network that maximally leverage action sensitive features
in two streams. Because actions are described in moving image in videos, spa-
tial stream with only one frame perception unlikely to recognize action directly.
While temporal stream have wider temporal perception and inherently sensi-
tive at motion boundary [27]. Detial analysis can be found in our experiment
section. Inspired by SlowFast network [10], where spatial (slow) and temporal
(fast) are fed into different network architectures with different channels and
different temporal perception, we propose our models that treat temporal and
spatial asymmetrically.

In general, we use learned action sensitive knowledge(inherit from temporal
stream) as main stream. We discover different structures to extract beneficial
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Fig. 2. Data flow of different ASE settings. We set temporal stream as main stream and
spatial stream as reinforce stream. Reinforced streams are fed into classification and
activation branch then. (a) Fusion Model. (b) Bottleneck Model. (c) Bilinear Bottleneck
Model.

features to reinforce main stream. We adopt strategy in DenseNet [17] that we
concatenate our main stream and reinforce stream together for classification and
attention calculation. We call our extraction model Action Sensitive Extrac-
tor(ASE), different settings of ASE are shown in Fig. 2. For simplicity, we still
use single fully-connected layer for classification or attention branch. ASE with
classification and attention branch is referred as ASE model.

Fusion with Temporal Knowledge To leverage temporal features that are
related to actions, we propose to build a network that initialized with tempo-
ral features and extended with spatial features. To achieve this goal, we adopt
methods from [4], our network on fusion(concatenated) features is initiated with
pretrained temporal weights and zero spatial weights. For example, equation 1
shows the classification branch for fusioned features. To inherit knowledge in
temporal classifier, we set W and b’ to pretrained temporal weights, while W*
and b® are set to 0. We also apply same method to attention branch.

c=W/.x/ +bf
-t (]

x* b*

Bottleneck Model To limit overfitting with spatial features, we further study
on limiting and distilling spatial features. Different from former studies that en-
force loss [26], we simply use special designed network architecture. As a naive
attempt, we use a bottleneck layer to extract knowledge from spatial features.
The bottleneck layer includes a dropout, a fully-connected layer and ReLU ac-
tivation. The features extracted from bottleneck layer are concatenated with
temporal features and feed to classification and attention branch. Our bottle-
neck layer extracts most expressive spatial features that help to identify actions.

Bilinear Bottleneck Model Bottleneck model will remove unnecessary spatial
feature but can’t introduce interactions. In recent works [40, 5], bilinear layers
are proposed to aggregate spatial-temporal features. To make use of connection
between streams, we propose to use bilinear block to aggregate features. In
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our work, we propose to use two fully-connected bottleneck layer to aggregate
features in each stream and use bilinear layer to combine temporal and spatial
features. We use 0.5 dropout before bottleneck layer and bilinear layer. We use
ReLU activation after fc layers and bilinear layer. The aggregated features are
concatenated with temporal features as in bottleneck model. Hidden layer size
of bottleneck layer and bilinear layer are set to same for simplicity.

3.2 Action Detection Criterion

Here we represent our action detection criterion. In our study, we propose to trim
fixed proportion of clips as background, since proportion of background frames
is relative stable in each dataset. We set our threshold as quantile of attention
values during training, similar to batch normalization [18], where mean and
standard deviation in each batch is recorded and reused, to deal with fluctuation.

Quantile level describes desired proportion of clips. Level of quantile defines
how much proportion the quantile divide, e.g. quantile at 30% means around
30% of clips in each batch have lower attention than the quantile. For each
batch in training, we sort attentions of each clip in this batch and sample a
attention value at desired level. Current quantile is updated by a momentum
factor according to equation 2. Quantile is fixed during testing.

¢ =a¢'+(1-a) (2)

Our method is simple and cross modality, it is easy to apply our action
detection criterion to any attention based localization problem across different
settings. Note that the quantile maybe different across datasets, since proportion
of background frames maybe different.

3.3 Network Details

Having explained key components, now we introduce details of our ASN as shown
in Fig. 3. To efficiently look over long video, we break videos into different levels.
In bottom level, each frame is represented separately as frame. We use features
from our two-stream pretrained DCNN model as representation. Then the middle
level, which is clip level. We average our features sampled in short temporal
period as clip representation since close frames in videos should be correlated.
To distill key knowledge and trim noise, we use Action Sensitive Extractor to
extract features and feed to classification and attention branch. The highest
level is video-level, which is aggregated by attention mechanism. This level is
symmetrical to annotations.

In our study, we discover a setting based on extracted features from Untrimmed-
Net [38]. Following UntrimmedNet [38], we randomly sample 7 clips for untrimmed
videos, 1 clips for video clips. For each clip, 3 frames are sparsely sampled as
in TSN [39] and averaged as clip representation. Two fully-connected layers
are used to produce classification and attention respectively. Dropout of 0.5
is used only before classification layer. To fuse clip level activations, we apply
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Fig. 3. Our full network for action recognition and detection. We use our ASE model
to produce frame activations and attentions.Video-level classification activations are
optimized with video-level annotations. CAS is generated by action detection criterion.
Action segments are selected based on CAS.

softmax operation on attentions z from clip 1 to t. The normalized attentions
o _ __ exp(xf)
P X exp(ad)
diction x¢, where x°¢ = Zﬁzl z%x¢. Next, we apply softmax operations among
each dimension of prediction and optimize with multi-label cross-entropy loss.

T are used to fuse clip level classifications into video level pre-

t
1xtoy) = S yidog( P 3
(%) ;y g(Z§=1 exp(xg)) (3)

During testing, we use strategy similarly to [38] and [30]. Each clip is aggre-
gated every 15 frames. ASE model produces classification and attention activa-
tions for each clip. For video recognition, we soften our attentions by a factor
(sets to 3) at first. Then, clips are fused to video representation according to
their attentions as in training. For video detection, we generate CAS of size
clip_-number x class_number and feed it into selection method. Firstly, we apply
softmax operation on clip classification activations. Then, we apply threshold
on video-level prediction, clip activations of video unrelated class are set to 0
in CAS. Thirdly, we apply attention level threshold, clips with attentions lower
than threshold are set to 0 in CAS. Finally we feed our CAS into selection
method to generate action segments.

4 Experiments

4.1 Dataset

THUMOS14 [20] has 101 classes for recognition and 20 classes out of 101 for
action detection. THUMOS14 includes training set, validation set and testing
set. Training set includes action video clips, validation and testing set includes
untrimmed videos. In THUMOS14, 15 instances of actions covers 29% of video
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on average [28]. We train our model on training set and validation set, we test
our model on testing set.

ActivityNet1.2 [2] has 100 classes for both detection and recognition. It is
divided into training set, validation set and test set. In ActivityNet, 1.5 instances
of actions covers 64% of video on average [28]. We train our model on training
set and test on validation set.

4.2 Implementation Details

We train our ASN using features extracted by UntrimmedNet pretrained model,
which trained on same dataset and subsets as UntrimmedNet. We train our
network with Nestrov momentum [36] of 0.9, weights decay of 0.0005. Batch size
is set to 512 for THUMOS14 validation set and 8192 for THUMOS14 training
set. Batch size is set to 512 for ActivityNet1.2. On THUMOS14 [20], we train
80 epochs jointly on training set and validation set. Our learning rate is set to
0.1 and decay 10 times on 40th and 60th epoch. On ActivityNet1.2 [2], we train
160 epochs jointly on training set. Learning rate is set to 0.1 and decay on 80th
and 120th epoch.

4.3 Ablation study

In this section, we explore our action detection criterion at different levels of
quantiles and different model settings. For simplicity and efficiency, we use naive
approach in UntrimmedNet [38] as selection method in ablation study on THU-
MOS14. This method only selects consecutive activated frames in CAS. For a
selected snippet from clip timestamp n to k + n with label v, confidence scores
s are evaluated by video-level activation ¢, and average activation as shown in
Equation 4. Where we use A = 0.2 in our experiment.

1 k+n
= L+ Aey 4
s n+1;C”+ c (4)

Evaluation of Action Detection Criterion To demonstrate efficiency of our
action detection criterion, we train our network 10 times and record performance
on testing set under different quantiles. As baseline, spatial (RGB) and temporal
(Flow) models are treated separately. Different levels of quantiles are recorded
and tested on localization task. We train our network 10 times and quantiles
are recorded at level 10%, 20%, 30% to 90%. To compare with former studies,
we also apply our methods on pretrained weights provided by [38], the quantiles
of pretrained models are recorded by running on THUMOS14 validation set.
CAS of two-stream model in localization are generated by two steps. First, clip
level classifications after softmax are averaged. Second, attention scores of each
stream are normalized by each threshold and averaged. Video-level recognition
results are set to average of two streams.
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Fig. 4. Localization mAP of flow and rgb model under different quantiles on THU-
MOS14. mAP is recorded under 0.5 IoU threshold.

Results of spatial and temporal model under IoU threshold of 0.5 are shown
in Fig. 4. The performance of pretrained model on different quantiles are shown
in Fig. 5. For different models, performance peaks locate near 50% quantiles.
During training, we find attention quantiles are fluctuating but performances
are generally stable. Notably, spatial performances are worse and more unstable
than temporal. We also compare our methods with original UntrimmedNet [38].
Performances of our best models under different settings are shown in Table 1.
Our action detection criterion can achieve high performance with only temporal
stream.

Evaluation of Streams We evaluate different combination of streams as shown
in Table 1. We evaluate on spatial (RGB), temporal (Flow), two-stream and fu-
sion stream (concatenated features of RGB and Flow). We also discover attention
quality of each stream.

Table 1. Comparison with different settings on THUMOS14. We compare localization
mAP under common IoU threshold and recognition accuracy. UntrimmedNet use a
slightly different recognition strategy.

Localization (IoU threshold)

Models 0.3 0.4 0.5 0.6 0.7 Recognition
Flow pretrained 27.68 21.26 14.87 9.79 5.64 73.93%
RGB pretrained 15.32 8.76 5.02 2.80 1.35 72.29%
Two-stream pretrained  28.50 21.06 14.40 8.75 4.78 82.04%
UntrimmedNet [38] 28.2 21.1 13.7 - - *82.2%
Flow stream 28.67 22.43 16.60 10.42 5.63 74.15%
RGB stream 15.32 8.76 5.02 2.80 1.35 72.29%
Fusion stream 20.40 14.50 9.50 5.56 3.03 75.61%
Two-stream 27.87  20.76 14.46 8.59 4.68 79.95%

Two-stream (RGB) 21.88  14.73 9.19 4.97 2.29 -
Two-stream (Flow) 28.57 22.23 16.40 10.04 5.62 -
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Surprisingly, temporal stream yield the best localization performance. Streams
with spatial features perform poorly. The bad behavior of spatial related streams
may because of trivial details in spatial features cause overfitting. In addition,
we analyze attention in each stream. For two-stream model, we fix CAS and
apply only temporal or spatial attention to our criterion. We find two-stream
with temporal attentions yield high performance similar to temporal stream
and two-stream with spatial attentions yield low performance similar to fusion
stream.

Our experiment shows differences in action sensitivity between two streams.
Combining with temporal and spatial information usually yield higher perfor-
mance in action recognition but lower in localization. We also find commonly
used two-stream or fusion strategies are inefficient in weakly-supervised local-
ization task, which are worse than single temporal stream.

Evaluation of ASE We evaluate different ASE model settings. For inherit
strategy, we our best flow model as initial weight. For fusion model, bottleneck

m Flow mRGB = Two-stream
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Fig. 5. Localization mAP of pretrained model under different quantiles on THU-
MOS14. mAP is recorded under 0.5 IoU threshold.

Table 2. Compare with different ASE model settings on THUMOS14.

Localization (IoU threshold)

Models 0.3 0.4 0.5 0.6 0.7 Recognition
Flow ours 28.67 22.43 16.60 10.42 5.63 74.15%
Two-stream ours 27.87 20.76 14.46 8.59 4.68 79.95%
Fusion from scratch 20.40 14.50 9.50 5.56 3.03 75.61%
Fusion inherit 26.21 19.38 12.72 7.45 4.02 81.39%
Bottleneck64 inherit 32.73 24.84 17.36 11.12 6.42 78.16%
Bottleneck64 scratch 29.35 22.61 15.91 9.94 5.39 80.92%
Bottleneck128 inherit 32.33 25.13 17.60 10.69 5.64 79.10%
BiBottleneck64 inherit  31.89 25.35 17.74 11.29 6.23 78.20%
BiBottleneck64 scratch ~ 29.12 22.84 16.27 10.30 5.99 74.73%

BiBottleneck128 inherit 32.21 25.34 18.16 11.42 6.23 78.57%
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model and bilinear bottleneck model, we compare training from scratch and
inherit strategy with feature size of 64. We compare inherit strategy of feature
size of 64 and 128 in bottleneck model and bilinear bottleneck model. Our results
are shown in Table 2.

Compare with training from scratch, inherit strategy greatly improves recog-
nition and localization except for bottleneck model. For bottleneck model, only
localization is slightly improved. This phenomenon may denotes that our bottle-
neck model has already restrained overfitting. For bottleneck models and bilinear
bottleneck models, feature size from 64 to 128 slightly improves performance.

In recognition tasks, fusion model has the highest performance because it can
access full information, it also proves that our bottleneck structure does restrain
information. For localization, bottleneck model and bilinear bottleneck model
performs much higher than fusion model. Bilinear bottleneck models perform
slightly higher than bottleneck model, which denotes that bilinear layer does
improve interaction. High performance of our proposed ASE models shows its
ability to extract action sensitive features.

4.4 Experiments on AutoLoc

To evaluate our final Action Sensitive Network, we use AutoLoc [30] as selec-
tion methods and compare with state-of-art results. AutoLoc incorporate Outer-
Inter-Contrastive (OIC) loss that evaluate action snippet accurately. To further
adjust performance, we increase weights for outer boundary in OIC as follow:

Lorc = Mo(¢) + Ai(¢) (5)

On THUMOS14, we set A to 2. We also increase boundary inflation rate to
0.35. These settings help AutoLoc select most distinguishable action snippets.
We add more offset anchors to AutoLoc and only use AutoLoc as a selection
method over CAS. We show performance of our bilinear bottleneck model with
feature size 128 and inherit strategy in Table 4. For ActivityNet1.2 [2], we set A
to 5 and boundary inflation to 0.7. We use quanile at 10% for ActivityNet1.2.
Our results are shown in Table 3. Compare with other weakly-supervised TAL
methods, our method have advantage especially under higher IoU and reach
state-of-art level in both datasets.

Table 3. Comparison with state-of-art methods on ActivityNet1.2 in terms of action
localization mAP under different IoU. We only list weakly-supervised methods. All re-
sults in this table are based on UntrimmedNet features. We describe selection methods
we used in brackets.

Localization (IoU threshold)
Models 0.5 055 0.6 0.65 0.7 075 0.8 0.85 0.9 0.95 Avg.

UntrimmedNet [38] 74 6.1 52 45 39 32 25 18 1.2 0.7 36
AutoLoc [30] 27.3 249 225 199 175 15.1 13.0 100 6.8 3.3 16.0
W-TALC [26] 37.0 33.5 304 25.7 14.6 12.7 100 7.0 42 1.5 180

ASN (AutoLoc) 29.8 27.1 25.0 23.1 21.2 18.6 16.1 13.1 9.6 44 188
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Table 4. Comparison with state-of-art methods on THUMOS14 in terms of action
localization mAP under different IoU. All weakly-supervised results are based on
UntrimmedNet features. We describe selection methods we used in brackets.

Localization (IoU threshold)

Supervision Models 0.3 0.4 0.5 0.6 0.7
Full S-CNN [31] 36.3 28.7 17.0 10.3 5.3
Full Yuan et al. [42] 33.6 26.1 18.8 - -
Full CDC [29] 40.1 29.4 23.3 13.1 7.9
Full Dai et al. [6] - 33.3 25.6 15.9 9.0
Full SSAD [22] 430 350  24.6 - -
Full Turn Tap [12] 441 34.9 25.6 - -
Full R-C3D [41] 447 356 289 - -
Full SS-TAD [1] 45.7 - 29.2 - 9.6
Full Gao et al. [11] 50.1 41.3 31.0 19.1 9.9
Full SSN [43] 51.9 41.0 29.8 19.6 10.7
Full BSN [23] 53.5 45.0 36.9 28.4 20.0
Weak Sun et al. [34] 8.5 5.2 44 - -
Weak Hide and Seek [33] 19.5 12.7 6.8 - -
Weak UntrimmedNet [38] 28.2 21.1 13.7 - -
Weak AutoLoc [30] 35.8 29.0 21.2 13.4 5.8
Weak W-TALC [26] 32.0 26.0 18.8 - 6.2
Weak STPN [25] 311 235 162 98 5.1
Weak ASN (Naive) 32.2 25.3 18.2 11.4 6.2
Weak ASN (AutoLoc) 35.9 29.4 22.8 15.2 7.3

5 Conclusion

We propose a general action detection criterion which can generate high quality
CAS and can apply to different modalities. Based on this threholding method,
we analyze performance of different combinations of streams. According to our
experiments, spatial and temporal stream contains different information and
have different sensitivity in actions. To combine two streams properly, we propose
our novel Action Sensitive Network. Two-stream features are treated asymmetry
to produce accurate representation without losing sensitivity in actions. We use
ASE model to produce clip features and CAS that can be applied to different
selection methods. Our network yields state-of-art performance with AutoLoc
as selection method. In the future, we can investigate higher level relationship
between different streams and apply our method to more modalities.
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