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ABSTRACT
Visual attributes in individual video frames, such as the pres-
ence of characteristic objects and scenes, offer substantial in-
formation for action recognition in videos. With individual
2D video frame as input, visual attributes extraction could
be achieved effectively and efficiently with more sophisti-
cated convolutional neural network than current 3D CNNs
with spatio-temporal filters, thanks to fewer parameters in
2D CNNs. In this paper, the integration of visual attributes
(including detection, encoding and classification) into multi-
stream 3D CNN is proposed for action recognition in trimmed
videos, with the proposed visual Attribute-augmented 3D
CNN (A3D) framework. The visual attribute pipeline in-
cludes an object detection network, an attributes encoding
network and a classification network. Our proposed A3D
framework achieves state-of-the-art performance on both the
HMDB51 and the UCF101 datasets.

Index Terms— Action Recognition, Visual Attributes,
Detection, NetVLAD, Word2vec

1. INTRODUCTION

Action recognition has been extensively studied in past few
years [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Among these
methods, recognizing human actions in videos with convo-
lutional neural networks (CNNs) has been a popular research
topic [1, 12, 13, 7], thanks to the recent success of CNNs
in various computer vision tasks [14, 15]. Typically, these
methods incorporate 3D CNNs to capture spatio-temporal in-
formation, optionally with a separate optical flow stream to
account for low-level motion. Due to the increased parameter
size in 3D filters in 3D CNNs, 3D CNNs are typically much
shallower than their 2D counterparts [2]. However, a new 3D
CNN named “Two-Stream Inflated 3D ConvNet” (I3D) was
recently proposed in [7], with much deeper but still compu-
tationally feasible network design.
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(a) Playing Dhol (b) Playing Tabla

Fig. 1: (a) “Playing Dhol”, (b) “Playing Tabla” in UCF101,
which confuse the I3D [7] algorithm. Visual attributes
(dhol/tablas) could have eliminated the ambiguity.

One of the potential improvements to current 3D CNN
based action recognition systems could be the explicit inclu-
sion of visual attributes as auxiliary information [16, 17, 18]
for classification. The visual attributes could be detected, en-
coded and classified with regular 2D CNNs effectively and
efficiently. Visual attributes could play a vital role in some
challenging action recognition cases, such as the one illus-
trated in Figure 1. The I3D [7] network struggles to distin-
guish “Playing Dhol” from “Playing Tabla”. However, the vi-
sual attributes (e.g., marked by the red and blue boxes) could
have helped to eliminate such confusions.

Based on this intuition, an enhanced action recogni-
tion framework is proposed, namely the visual Attribute-
augmented 3D CNN (A3D), comprising both a 3D CNN
pipeline and a visual attributes pipeline. The 3D CNN
pipeline is a modified I3D network with temporally sub-
sampled RGB/optical flow inputs, trained with filtered at-
tributes. While the visual attributes pipeline consists of
a YOLO9000 [19] visual attribute candidate’s detector, a
ResNet [20]/Word2Vec [21]+Mean-pool/NetVLAD [22] at-
tributes encoders and different classifiers. Based on the out-
put probabilities from both pipelines, the final prediction is
constructed by global thresholding and weighted summation,
as illustrated in Figure 2. In order to achieve fair compari-
son, we downloaded the network model pre-trained on dataset
“Kinectics” and reimplemented the finetuning steps on both
UCF101 and HMDB51 ourselves, and named this reimple-
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Fig. 2: A3D framework overview. Optical flow and RGB inputs are fed to the temporal stream and spatial stream of the
I3D ConvNet, respectively, followed by early fusion which merges fc features and a softmax to obtain the 3D CNN pipeline
prediction p1. The visual attribute pipeline (at the bottom) samples RGB frames and detects visual attribute candidates (with
e.g., Darknet-19 from YOLO9000), constructs video attribute representations (via e.g., Word2vec) followed by a classification
network (finetuned ResNet-152). The prediction p2 from this attribute pipeline is ultimately combined with p1 by Eq. (1).

mented version as I3D*1, which is later used for comparison
in Table 4.

2. PROPOSED A3D FRAMEWORK

As in Figure 2, two pipelines are present in the A3D frame-
work. The 3D CNN pipeline is illustrated on the top, with
a temporal I3D stream and a spatial I3D stream, processing
sampled optical flow images and regular RGB images, respec-
tively. The fc feature outputs from both streams are merged
before the softmax scoring layer (which is different from the
original I3D implementation in [7]) to obtain pipeline pre-
diction p1. On contrary, the visual attribute pipeline is il-
lustrated at the bottom of Figure 2, with only regular RGB
images as inputs. This attribute pipeline contains a generic
object (i.e., visual attribute candidate) detector (Darknet-19
from YOLO9000), a video attribute representation construc-
tor (mean pooling, NetVLAD [22] or Word2vec [21]) and fi-
nally a CNN based classifier, which produces the pipeline pre-
diction p2. As an auxiliary information source, the attribute
pipeline output p2 is only activated when p1 falls below a
predefined global threshold. Details of major components of
A3D are provided as follows.
Revised Two-stream Fusion in 3D CNN Pipeline. Specif-
ically, the inflated Inception-V1 module proposed in [7] is

1The reimplmented I3D* slightly underperforms the official one.

used in both streams of the 3D CNN pipeline. After finish-
ing network training, the outputs of the last fully connected
layer from both streams are weighted (with w1 = 0.6 and
w2 = 0.4, respectively. Values of the weights are empiri-
cally determined.), element-wise summed, and fed to a soft-
max scoring layer to obtain prediction p1. Unlike the original
fusion scheme in [7], where fusion is carried out after the
softmax scoring layer, the revised fusion strategy in the 3D
CNN pipeline of A3D leads to performance enhancements,
as later detailed in Table 1.
Visual Attribute Candidate Detection. To exploit relevant
visual attributes to action recognition tasks, Darknet-19 (from
YOLO9000) object detector is applied on randomly selected
video frames. Thanks to the very large number of object cate-
gories (approximately 9000), this object detector could serve
as an off-the-shelf generic attribute mining tool. In order to
remove obvious outliers with minimal useful information, at-
tributes candidates with detected bounding boxes smaller than
20-pixels are removed. For an attribute a (there are approxi-
mately 9000 distinctive choices of a) selected from video of
class t (t denotes the label of the video), we assign t as the
label of a. Attribute candidates are cropped from original im-
ages and saved for subsequent steps.
Video Attribute Representation and Classification. The
number of attributes detected from different video is variant,
thus it is necessary to encode them in a format (i.e., video at-
tribute representation) with consistent size. Three strategies



of attribute representation construction are tested. We find
the strategy Word2Vec+ResNet-152 finetune achieves the best
accuracy. Due to limited space, please refer to the extended
version of this paper [23] for detailed experiment settings and
results.
Joint Inference of Two Pipelines. In the testing phase, both
pipelines jointly perform classification inference. Given a test
video, p1 and p2 are obtained by the 3D CNN pipeline and
visual attribute pipeline, respectively. Final prediction p is
obtained by,

p =

{
p1 if p1 > T

p2 if p1 ≤ T
, (1)

where T is a global threshold of prediction confidence, em-
pirically set to 0.1.

3. EXPERIMENTS

The proposed A3D framework is evaluated on both the
HMDB51 and UCF101 datasets. the standard evaluation pro-
tocol is used and the average accuracies over three splits are
reported (unless otherwise specified). In the following experi-
ments, the pretrained (on Kinetics dataset) inflated Inception-
V1 models are finetuned on UCF101 and HMDB51 dataset,
separately. The temporal I3D stream and spatial I3D stream
are also separately trained on optical flow images and RGB
images, respectively. For each video, 64 regular RGB frames
and 64 optical flow frames are randomly selected as the in-
put to finetune the 3D CNN pipeline. Regular stochastic gra-
dient descent (SGD) and back propagation (BP) are used to
optimize training loss, with initial learning rate of 0.001, a
learning rate decay of 0.8× every 10 epochs and a total of
50 epochs. In the original I3D implementation [7], fusion is
carried out after the softmax scoring layer. On contrary, the
revised fusion in the proposed 3D CNN pipeline happens im-
mediately after obtaining the features from fully connected
layers. FC layer features are weighted by w1 = 0.4 and
w2 = 0.6 (weight values are determined empirically) and
summed element-wise. As shown in Table 1 (action classi-
fication based purely on p1), the revised fusion outperforms
original fusion on the “split1” of both datasets. Therefore,
revised fusion is used throughout the remainder of the paper.

Thanks to the relatively simple appearance of trimmed
videos in UCF101/HMDB51, one randomly selected frame
is empirically sufficient for visual attribute extraction. We
exploit YOLO9000 [19] by setting a low threshold of 0.02

Table 1: 3D CNN Pipeline: 2 fusion strategies.

Method UCF101(split1) HMDB51(split1)
Original Fusion 95.67% 79.00%
Revised Fusion 97.09% 79.22%

Fig. 3: Sample results of visual attributes detection

Table 2: Comparison of 3D CNN pipeline p1 based classifier,
video attribute pipeline p2 based classifier and p based joint
classifier on split1 of UCF101 and HMDB51.

Classifier based on UCF101(s1) HMDB51(s1)
3D CNN pipeline p1 97.09% 79.22%
Attribute pipeline p2 37.10% 27.05%
Joint A3D framework p 97.44% 79.35%

and generate abundant visual attribute candidates (samples
are shown in Figure 3).

In addition, an ablation study is carried out and the results
are summarized in Table 2. Although attribute pipeline p2
based classifier substantially underperforms the counterpart
based on p1 (possibly due to excessive noises incurred by ir-
relevant objects), it stills helps to incorporate p2 via a reason-
able combination function (e.g., Eq. (1)). The classifier based
jointly on both pipelines p achieves the highest accuracy on
split1 of both datasets.

Computational complexity wise, the proposed A3D
framework is only marginally heavier than the I3D algorithm.
A comparison of running time2 (including both the training
phase and testing phase with split1 of both datasets) is sum-
marized in Table 3. The bottom row in Table 3 contains the
percentile overhead running time of A3D over I3D, which are
all under 10%. In Table 4, the end-to-end action recognition
accuracies are compared over all 3 splits of both datasets. The
proposed A3D framework achieves the highest overall accu-
racies on both datasets.

4. CONCLUSIONS

In this paper, the A3D action recognition framework is pro-
posed based on the explicit incorporation of visual attributes
to a two-stream 3D CNN pipeline with a new fusion strat-
egy. Different designs of multiple components (video at-
tribute representation constructor, classifier) in the new video

2Based on our hardware setup, GPU: 1× Nvidia GTX 1080Ti, CPU: 2×
Intel(R) Xeon(R) E5-2640 v4 2.40GHz and 512 GB memory.



Table 3: Running time comparison on split1 of 2 datasets

Method UCF101(s1) HMDB51(s1)
Training Testing Training Testing

I3D 41.67h 0.53h 16.70h 0.22h
A3D 45.32h 0.61h 17.82h 0.26h

Overhead 8.76% 1.56% 6.71% 1.82%

Table 4: Comparison of A3D with competing methods

Method UCF101 HMDB51
iDT [4] 85.9% 57.2%
Two-Stream [1] 88.0% 59.4%
C3D [2] 85.2% -
TDD + iDT [24] 91.5% 65.9%
TSN [13] 94.2% 69.4%
P3D ResNet + iDT [25] 93.7% -
ST-ResNet + iDT [26] 94.6% 70.3%
I3D* 97.1% 79.4%
Proposed A3D 97.4% 80.5%

attribute pipeline are tested and empirically determined. An
ablation study confirms the value of the additional video at-
tribute pipeline.
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