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Abstract—Inspired by the recent advance in attentional pooling
techniques in image classification and action recognition tasks, we
propose the Generalized Attentional Pooling (GAP) based Convo-
lutional Neural Network (CNN) algorithm for action recognition
in still images. The proposed GAP-CNN can be formulated as
a new approximation of the second-order/bilinear pooling tech-
niques widely used in fine-grained image classification. Unlike the
existing rank-1 approximation, a generalized factoring (with non-
linear functions) is introduced to exploit the intrinsic structural
information of the sample covariance matrices of convolutional
layer outputs. Without requiring preprocessing steps such as
object (e.g., human body) bounding boxes detection, the proposed
GAP-CNN automatically focuses on the most informative part in
still images. With the additional guidance of keypoints of human
pose, the proposed GAP-CNN algorithm achieves the state-of-
the-art action recognition accuracy on the large-scale MPII still
image dataset.

Index Terms—Action Recognition, Generalized Attentional
Pooling, Convolutional Neural Network

I. INTRODUCTION

Human action recognition is a fundamental and well ex-
plored research area in computer vision, due to its widespread
applications in human-computer interaction, surveillance and
game control. Traditional methods are based on handcrafted
features, such as dense trajectory [1], object detection [2] or
context mining [3] in image content. Recent convolutional
neural networks (CNNs) based approaches have achieved
impressive performance in action recognition with both still
images and videos. Among them, multi-stream CNN methods
such as “Two-Stream” [4] and its derivatives [5], [6] are among
the top performers on the UCF101 [7] and HMDB51 [8] video
action recognition datasets. Currently, the ResNet-101 based
attentional pooling method [9] keeps the record of highest
action recognition accuracy in still images with the MPII [10]
dataset.

Previously in action recognition in still images, it is the
norm to feed entire images to a CNN for classification. Later
the hard attention concept is introduced with fine-grained
features around the human bounding boxes or human pose
keypoints, and such features are subsequently fed to CNNs for
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action classification [3]. Despite their performance advantages
over the standard full-image based CNNs, the hard attention
based CNNs suffer from significantly higher computational
complexity due to the extra human bounding boxes detection
step. Worse still, the required manual labeling of such bound-
ing boxes in training data is prohibitively time-consuming and
potentially expensive.

Pooling layer is an indispensable component of a modern
CNN. Popular pooling algorithms include mean pooling and
max pooling, both of which are first-order pooling (pooling
operates on the feature map/matrix itself). Alternatively, the
second-order pooling (pooling operates on the sample co-
variance matrix of the feature map/matrix) is advocated in
[11], especially in applications such as semantic segmenta-
tion and fine-grained image classification. In [9], an evolved
variant of the second-order pooling is proposed, with low-
rank approximation and reformulation as attentional pooling.
However, it assumes a rank-1 approximation of the weight
matrix, which is arguably too restrictive and could potentially
lead to performance penalties.

Inspired by [9], we propose a generalized factoring scheme
(with additional non-linear functions) of the weight matrix,
to exploit the intrinsic structural information of the sample
covariance matrices of convolutional layer outputs. With the
proposed factoring scheme, the weights matrix of a pooling
layer is approximated by a top-down vector, a bottom-up
vector and multiple bottom-up matrices. Parameters such as
the optimal number of bottom-up matrices are empirically
determined via cross validation. By incorporating extra super-
vision in the form of human pose keypoints, our proposed
Generalized Attentional Pooling (GAP) based CNN+Pose
(GAP-CNN+Pose) method can achieve even better results than
the original attentional pooling [9] on the large-scale MPII
still image action recognition dataset, indicating that GAP is
complementary to hard attention.

The primary contribution of this paper is a new, generalized
factoring/approximation to the weight matrix in the second
order pooling layer of a CNN, with the action recognition
application in a large-scale MPII still image dataset.

II. RELATED WORK

Visual recognition has been widely studied in recent years,
with both still image datasets and video datasets [1], [3], [12]–



Fig. 1. Overview of the proposed GAP-CNN+Pose algorithm. Input images are fed into a ResNet-101 CNN (with the last pooling layer removed) to generate
the feature map/matrix X . Subsequently, two types of attention are imposed on the feature map, following [9]. The top branch denotes the top-down attention
(i.e., class-specific attention), which is constructed by multiplying the feature map/matrix X with a list of class-dependent vectors a1,a2, · · ·aK . On the
bottom branch of the architecture, a series of T class-agnostic matrices U1, · · ·UT are multiplied after nonlinear transformations f(·), e.g., rectified linear unit
(ReLU), followed by a class-agnostic vector c to represent the bottom-up attention, i.e., the saliency-based attention. The additional human pose information
is incorporated via the pose heatmaps and `2 regression.

[18]. For large scale still image action recognition datasets
such as MPII [10] and HICO [19], the performance of popular
baseline methods is unimpressive, e.g., about 30% mAP on
MPII dataset. Thanks to the extremely large number of classes
(393 and 600 classes for MPII and HICO, respectively.) as
well as high diversity1, it is highly challenging to achieve high
recognition accuracy on such datasets. On the contrary, popular
video based action recognition datasets like UCF101 [7] and
HMDB51 [8] are comparatively much smaller, with only 101
and 51 categories, respectively.

In this paper we focus on action recognition with still
images. R*CNN [3] is a recent work in this field, in which R-
CNN [9] is adapted to include one primary region and multiple
proposal regions. The proposal region with the highest score
is selected to cooperate with primary region to recognize the
action in an image. Assisted with bounding boxes of the
subject (e.g., human), R*CNN achieves good result on the
MPII dataset [10].

The most related work is [9], in which a rank-1 approxima-
tion of the weight matrix is proposed and attentional pooling
is reformulated as low-rank second-order pooling. In [9], the
attentional pooling is reformulated as a drop-in replacement
for the popular mean pooling or max pooling near the end
of CNNs. In contrast with [9], the proposed GAP extends
the rank-1 approximation to a series of generalized non-linear
factoring, and GAP can be incorporated after any layer in a
CNN.

III. FORMULATION

The proposed GAP architecture is illustrated in Fig. 1. Let
X ∈ Rn×f denote the reshaped output feature of a given
layer, where n is the total number of spatial elements in the
feature map, i.e., the product of width and height of the feature

1In addition, it could be ambiguous to determine an action class based on
a still image without temporal cues, e.g., “sit down” versus “stand up”.

map, and f is the number of channels. Conventional 1st order
mean pooling and binary classification score computation can
be formulated as

scorebinorder1(X) =
1

n
1TXw, (1)

with 1
nX

T1 being the mean-pooled feature and w being a
f × 1 scoring weights.

Correspondingly, let matrix W ∈ Rf×f denote the scoring
weight matrix after a second order pooling layer [11]. Follow-
ing [9], the binary classification score is obtained by

scorebinorder2(X) = Tr(XTXW T ), (2)

where X ∈ Rn×f and Σ := XTX is traditionally termed
the sample covariance matrix2 . Substitution of Σ into Eq. (2)
yields

scorebinorder2(X) = Tr(ΣW T ) =
∑
i,j

Σi,jWi,j , (3)

where Σ,W ∈ Rf×f . From Eq. (3), matrix W can be inter-
preted as the element-wise weights of the sample covariance
matrix Σ.

Unlike the highly restrictive rank-1 approximation of W
(W := abT ) in [9], we propose a gentler regularization by
setting

W := af(V c)T , a ∈ Rf×1, c ∈ Rr×1,V ∈ Rf×r, (4)

where f(·) is an element-wise nonlinear transform function
that keeps output dimensions as the input dimension, e.g.,
rectified linear unit (ReLU). In addition, V can be further
factorized into T matrices as

V =

T∏
t=1

f(Ut) = f(U1)f(U2) . . . f(UT ), (5)

2Sometimes sample mean values are subtracted before computing such
sample covariance matrix. A constant factor of 1/(n−1) can also be included
in the definition of Σ.



where U1 ∈ Rf×r1 ,U2 ∈ Rr1×r2 , · · · ,UT ∈ Rr(T−1)×r.
By the introduction of the matrix factorizations and non-

linear functions in Eq. (4)–(5), more structural information
in the sample covariance matrix Σ could potentially be ex-
ploited. Practically, such factorization and nonlinearity are
implemented as convolutional and ReLU layers, respectively.
The optimal value of T is empirically decided to balance
performance and model complexity3. Substitution of Eq. (4)–
(5) into Eq. (2) yields a reformulation as the attentional score,

scorebinatt (X) = Tr
(
XTXf(V c)aT

)
(6)

= (Xa)T (Xf(V c)) . (7)

Eq. (7) indicates that the score can be seen as the inner product
of two attentional heatmaps. Similarly, such derivations can be
extended to K-class (K ≥ 3) classifier. Let Wk be the class-
specific weights for class k, k = 1, · · · ,K. Eq. (2) can be
rewritten as,

scoreKclass
order2 (X, k) = Tr(XTXW T

k ), (8)

with Wk ∈ Rf×f . Parallel to Eq. (6)–(7), Let4 Wk :=
ak(V c)T , the class-specific attentional pooling and scoring
is obtained as

scoreKclass
att (X, k) = (Xak)

TX(f(V c)). (9)

In Eq. (9), the former terms Xak represent the class-specific
top-down attentional feature maps; while the latter terms
Xf(V c) denote the saliency-based, class-agnostic bottom-up
attentional feature maps. As advocated in [20] and [9], the
fusion of top-down and bottom-up attention maps is motivated
biologically, and it is beneficial to modulate saliency maps
with class-specific top-down information.

From [9], human pose regularization can contribute to the
action recognition accuracy. Therefore, we incorporate human
body keypoints heatmaps and use it as the regularization
term for the cross-entropy loss in Fig. 1. Specifically, two
additional convolutional layers are added after the last layer
of the ResNet-101 CNN and a 16-channel regression layer
to predict the pose keypoints. An l2 loss is used to calculate
the cost between the predicted heatmaps and the ground truth
heatmaps.

The overall loss is calculated by weighted sum of this l2
loss and a cross-entropy loss, making it possible to optimize
the entire GAP-CNN+Pose network in an end-to-end manner.

IV. EXPERIMENTS

Dataset. In this section, experiments are conducted on the
challenging large-scale action recognition datasets, i.e., the
MPII still image dataset [10]. The MPII human pose dataset
contains 15205 images in 393 action classes, grouped into a
train split, a validation split and a test split, with 8218, 6987
and 5708 images, respectively. The dataset is also annotated
with ground truth human body keypoints. We use the mean
average precision (mAP) and classification accuracy as criteria
to evaluate the performance of competing methods.

3More details are presented in Section IV.
4Note that V and c are bottom-up parameters, thus are class-agnostic.

Fig. 2. Illustration of different mAP with respect to varying weights for the
regularization pose `2 loss based on the validation split of the MPII dataset.
X-axis is on inverted logarithmic scale while Y-axis is on linear scale.

Weight of Pose Regularization. Cross validation experiments
are conducted to empirically determine the optimal weight of
the regularization `2 loss from pose keypoints. Without loss
of generality, the weight of the cross-entropy loss is fixed at
constant value 1, and the weight of the pose regularization loss
varies from 1 to 10−8, as shown in Fig. 2. From Fig. 2, we
observe that the mAP is insensitive to the choice of weight
value for the pose regularization loss. The highest mAP is
achieved with such weight at approximately 10−6, thus 10−6

is chosen and fixed throughout the rest of the paper.
Number of Bottom-up Matrices. In this part we show the
experiments designed to determine the optimal number of
bottom-up matrices, i.e., T in Eq. (5). Since convolution
operations in CNNs are implemented by matrix multiplication,
we take advantage of the existing convolution layers to imple-
ment matrix multiplication operations. We set r1 = 4096 and
determine the remaining values by induction as ri+1 = ri/2,
i = 1, · · · , T − 2. We use the convolutional layer Ci with
the input ri−1 and output ri to represent Ui. ReLU layers are
added between such convolution layers. Recognition accuracy
and mAP are used as criteria in the choice of T based on the
validation split of the MPII dataset, as shown in Fig. 3. We
observe that both criteria reach plateau with T over 3. To keep
the number of such convolutional layers as small as possible
(for computational efficiency), T is fixed at 3 in the rest of
this paper.
Attention Visualization. Figure 4 shows several typical exam-
ples of the GAP-CNN predicted attention heatmaps imposed
on input images. We observe that the most informative parts of
such input images are mostly highlighted in the corresponding
heatmaps.
Comparison. Because the ground truth labels for the test
split of the MPII dataset is not publicly available, the vali-
dation split is used for such evaluation. The comparison of
the proposed GAP-CNN method with competing algorithms
(without pose information) are summarized in the top half of
Table I. Our proposed GAP-CNN method achieves both the
highest mAP and the highest recognition accuracy. In addition,



Fig. 3. Illustration of recognition accuracies and mAP with different T values
based on the validation split of the MPII dataset. We observe that both mAP
and accuracy reach plateau with T over 3. T = 3 is the choice to maximize
mAP and accuracy.

Fig. 4. Examples of merged attentions on training images. All input images
are color images with RGB values, which are only shown in grayscale in
Fig. 4 to facilitate the visualization of heatmaps. We can find that our method
can focus on the important parts in images.

TABLE I
PERFORMANCE COMPARISON ON THE VALIDATION SET OF MPII.

Method mAP Accuracy
VGG16, R-CNN [3] 16.5% -
VGG16, R*CNN [3] 21.7% -
ResNet-101 [9] 26.2% -
Attn. Pool [9] 30.3% 35.3%
Proposed GAP-CNN 30.6% 36.0%
Attn. Pool.+Pose [9] 30.6% 35.7%
Proposed GAP-CNN+Pose 31.6% 36.9%

our proposed GAP-CNN+Pose algorithm also outperforms the

pose-enhanced version of attentional pooling [9], supporting
our speculation that the proposed GAP model could be com-
plementary to hard attention.

V. CONCLUSION

In this paper, the Generalized Attentional Pooling based
Convolutional Neural Network (GAP-CNN) algorithm is pro-
posed for action recognition in still images. Empirical exper-
iments are carried out to determine the practically optimal
number of bottom-up pooling matrices. In addition, extra
supervisions such as human pose keypoints are exploited.
With the practically optimal number of bottom-up attentional
pooling and a single top-down pooling, the proposed GAP-
CNN algorithm outperforms 4 competing algorithms, includ-
ing the original attentional pooling method [9]. Even after
the incorporation of human pose keypoints information, the
proposed GAP-CNN+Pose algorithm nevertheless achieves the
state-of-the-art action recognition performance on the large-
scale MPII still image dataset.
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