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Abstract. Research in human action recognition has accelerated signif-
icantly since the introduction of powerful machine learning tools such as
Convolutional Neural Networks (CNNs). However, effective and efficient
methods for incorporation of temporal information into CNNs are still
being actively explored in the recent literature. Motivated by the popu-
lar recurrent attention models in the research area of natural language
processing, we propose the Attention-based Temporal Weighted CNN
(ATW), which embeds a visual attention model into a temporal weighted
multi-stream CNN. This attention model is simply implemented as tem-
poral weighting yet it effectively boosts the recognition performance of
video representations. Besides, each stream in the proposed ATW frame-
work is capable of end-to-end training, with both network parameters
and temporal weights optimized by stochastic gradient descent (SGD)
with backpropagation. Our experiments show that the proposed atten-
tion mechanism contributes substantially to the performance gains with
the more discriminative snippets by focusing on more relevant video seg-
ments.

Key words: Action recognition, Attention model, Convolutional neural
netwoks, Video-level prediction, Temporal weighting

1 Introduction

Action recognition and activity understanding in videos are imperative elements
of computer vision research. Over the last few years, deep learning techniques
dramatically revolutionized research areas such as image classification, object
segmentation [7-9] and object detection [1-6]. Likewise, Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs) have been popular
in the action recognition task [6,10-17]. However, various network architectures
have been proposed with different strategies on the incorporation of video tem-
poral information. However, despite all these variations, their performance im-
provements over the finetuned image classification network are still relatively
small.
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Unlike image classification, the most distinctive property of video data is
the variable-length. While Images can be readily resized to the same spatial
resolution, it is difficult to subsample videos temporally. Therefore, it is difficult
for the early 3D ConvNet [1] to achieve action recognition performance on par
with the sophisticated hand-crafted iDT [18] representations.

In addition, some of the legacy action recognition datasets (e.g., KTH [19])
only contain repetitive and transient actions, which are rarely seen in everyday
life and therefore have limited practical applications. With more realistic actions
included (with complex actions, background clutter and long temporal duration),
the more recent action recognition dataset, e.g., YouTube’s sports, daily lives
videos (UCF-101 [20]) and isolated activities in movies (HMDB-51 [21]), offer
much more realistic challenges to evaluate modern action recognition algorithms.
Therefore, all experimental results in this paper are based on the UCF-101 and
HMDB-51 datasets.

Previous multi-stream architecture, such as the two-stream CNN [10], suffers
from a common drawback, their spatial CNN stream is solely based on a single
image randomly selected from the entire video. For complicated activities and
relatively long action videos (such as the ones in the UCF-101 and HMDB-
51 datasets), viewpoint variations and background clutter could significantly
complicate the representation of the video from a single randomly sampled video
frame. A recent remedy was proposed in the Temporal Segment Network (TSN)
[12] with a fusion step which incorporates multiple snippets®.

Inspired by the success of the attention model widely used in natural lan-
guage processing [22] and image caption generation [23,24], the Attention-based
Temporal Weighted CNN (ATW) is proposed in this paper, to further boost the
performance of action recognition by the introduction of a benign competition
mechanism between video snippets. The attention mechanism is implemented
via temporal weighting: instead of processing all sampled frames equally, the
temporal weighting mechanism automatically focuses more heavily on the se-
mantically critical segments, which could lead to reduced noise. In addition,
unlike prior P-CNN [15] which requires additional manual labeling of human
pose, a soft attention model is incorporated into the proposed ATW, where
such additional labeling is eliminated. Each stream of the proposed ATW CNN
can be readily trained end-to-end with stochastic gradient descent (SGD) with
backpropagation using only existing dataset labels.

The major contributions of this paper can be summarized as follows. (1)
An effective long-range attention mechanism simply implemented by temporal
weighting; (2) each stream of the proposed ATW network can be optimized
end-to-end, without requiring additional labeling; (3) state-of-the-art recognition
performance is achieved on two public datasets.

! Snippets are multi-modal data randomly sampled from non-overlapping video seg-
ments, see Fig. 1. Typically a video is divided into 1 to 8 segments. Segments are
typically much longer than “clips” used by 3D CNN literature, e.g., the 16-frame
clip in C3D [14].
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Fig. 1. Snippet generation with a fixed target number () of chunks. A video is evenly
portioned into N non-overlapping segments. Each segment contains approximately
the same number of video frames. As shown above, 2 additional modalities derived
from RGB video frames are also included, i.e., optical flows and warped optical flows.
RGB, optical flow and warped optical flow images sampled from the same segment are
grouped in a snippet.

2 Related Works

Human action recognition has been studied for decades, which were traditionally
based on hand-crafted features, such as dense trajectories [18,25] and sparse
space-time interest points [26]. In the past few years, CNN based techniques
have revolutionized the image/video understanding [1,2,4,6,10-13,16,27]. Per
the data types used for action recognition, deep neural networks based methods
can be categorized into two groups: (1) RGBD camera based action recognition,
usually with skeleton data and depth/3D point clouds information [15, 28, 29];
(2) conventional video camera based action recognition.

RGBD camera based action recognition offers 3D information, which is a
valuable addition to the conventional RGB channels. Such datasets are usually
captured by the Microsoft Xbox One Kinect Cameras, such as The Kinetics
dataset [15]. Despite its obvious advantage, there are some limiting factors which
restrict such model from wide applications. RGBD video datasets are relatively
new and labelled ones are not always readily available. A huge backlog of videos
captured by conventional RGB camcorders cannot be parsed by such methods
due to modality mismatch [30]. In addition, pure pose/skeleton based pipelines
rarely achieve recognition accuracy on par with RGB video frame based pipelines
[31,32], making them more suitable for an auxiliary system to existing ones.

Inspired by the success of computer vision with still RGB images, many
researchers have proposed numerous methods for the conventional RGB video
camera based action recognition. Ji et al. [1] extend regular 2D CNN to 3D, with
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promising performances achieved on small video datasets. Simonyan et al. [10]
propose the two-stream CNN, with each steam being a regular 2D CNN. The
innovation is primarily in the second CNN steam, which parses a stack of op-
tical flow images that contain temporal information. Since then, optical flow
is routinely used as the secondary modality in action recognition. Meanwhile,
3D CNN has evolved, too. Tran et al. [14] modified traditional 2D convolution
kernels and proposed the C3D network for spatiotemporal feature learning. Fe-
ichtenhofer et al. [16] discovered one of the limiting factors in the two-stream
CNN architecture, only a single video frame is randomly selected from a video as
the input of the RGB image stream. They proposed five variants of fusing spatial
CNN stream and two variants for the temporal steam. Additionally, Donahue et
al. [13] developed a recurrent architecture (LRCN) to boost the temporal dis-
cretion. Consecutive video frames are loaded with redundant information and
noises, therefore, they argue that temporal discretion via LRCN is critical to
action recognition. Some recent literature also proposed new architectures with
special considerations for temporal discretion [12,17,33, 34].

3 Formulation

Firstly, the temporally structured video representation is introduced, followed
by the temporal attention model and the proposed ATW framework.

3.1 Temporally Structured Representation of Action

How do various CNN based architectures incorporate the capacity to extract se-
mantic information in the time domain? According to the previous two-stream
CNN [10] literature, there are generally 3 sampling strategies: (1) dense sampling
in time domain, the network inputs are consecutive video frames covering the
entire video; (2) spare sampling one frame out of 7 (7 > 2) frames, i.e., frames at
time instants 0, ¢, ¢+ 7,t 427, -+ ,t + N7 are sampled; (3) with a target number
of N segments?, non-overlapping segments are obtained by evenly partition the
video into N such chunks, as illustrated in Fig. 1.

As noted by [12,13,16], the dense temporal sampling scheme is suboptimal,
with consecutive video frames containing redundant and maybe irrelevant in-
formation, recognition performance is likely to be compromised. For the sparse
sampling strategy with 7 intervals, the choice of 7 is a non-trivial problem. With
T too small, it degrades to the dense sampling; with 7 too large, some critical
discriminative information might get lost. Therefore, the third sampling scheme
with fixed target segments is arguably the advisable choice, given the segment
number N is reasonably chosen.

Suppose a video V is equally partitioned into N segments, i.e., V = {Sk}ff:p
where Sy, is the k-th segment. Inspired by [10,12,35], multi-modality processing

2 Typical N values are from 1 to 8.
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is beneficial. Therefore, three modalities (RGB video frame, optical flow image
and warped optical flow image?) are included in our proposed ATW network.

One RGB video frame, five optical flow image and five warped optical flow
images are randomly sampled from each segment Sk, as illustrated in Fig. 1,
and respectively used as the inputs to the spatial RGB ResNet stream, temporal
flow ResNet stream, and temporal warped flow ResNet stream, as shown in
Fig. 2. RGB, optical flow and warped optical flow images sampled from the
same video segment are grouped in a snippet. Each snippet is processed by
the proposed 3-stream ATW network and a per-snippet action probability is
obtained. After processing all snippets, a series of temporal weights are learned
via the attention model, which are used to fuse per-snippet probabilities into
video-level predictions.

3.2 Temporal Attention Model

The proposed ATW network architecture is presented in Fig. 2. Our base CNN
is the ResNet [36] or BN-Inception [37], which are both pretrained on the Im-
ageNet dataset [38]. During the training phase, every labeled input video V is
uniformly partitioned into N segments, i.e., V = {MECE MFE MWVE N
where MECB ME MW represent the RGB, optical flow and warped optical
flow images from the ith snippet, with y being the corresponding action label.
The 3 CNN stream (Crap, Cr and Cy ) map each input to corresponding fea-
ture vector as

Crap(M[9P) = aft%?,

CF(MiF) = aiFv 1
CWF(MWF) :aWF ( )
i=1,-,N,

where we call these af¢8 al,, aF" action feature vectors, and use a; to repre-

sent any given one from the 3 modalities. Note that w; is the expected importance
value of the ith snippet relative to the entire video. Evidently, if w; = %, the
attention model degrades to naive averaging. The weight w; is computed by the
attention model f,;; by a multi-layer perceptron conditioned on the previous
fully-connected hidden state (i.e., wqyt). The value of weight w; decides which
part of the segments should to pay attention to. Formally, the attention model
fate 18 defined as

€i = farr(Wart, ;) = Wp,a;. (2)
The weight w; of each action vector is computed by
expe;

W, = ————
S epe;

3)

3 As in [18], warped optical flow is obtained by compensating camera motion by an
estimated homography matrix.



6 Lecture Notes in Computer Science: J Zang et al.

|
|
RGB Attention I
Spatial ResNet:RGB Feature Vector Action Label |
T =l Shs g ‘E__E_‘ wl Playing Guitar :

g8 g8 g8 o =| £ ‘”2@_) Basketball Dunk
- |Attention ws Apply Eye Makeup | !
Temporal ResNet:Flow Flow (__Model Jattention Juggling Balls |
Feature Vector |
|

zlizl g Jzlizlg f2|2 i

\&[18 s[1s s[e[F |
U w H Attention-based |
Warped Flow Temporal ResNet:Warped Flow Warped Attention Temporal Weighted |
Flow vector Network |

Feature

Fig. 2. Proposed ATW network architecture. Three CNN streams are used to process
spatial RGB images, temporal optical flow images, and temporal warped optical flow
images, respectively. An attention model is employed to assign temporal weights be-
tween snippets for each stream/modality. Weighted sum is used to fuse predictions
from the three streams/modalities.

where each w; are normalized by passing through a softmax function, which
guarantees they are positive with ), w; = 1. Finally, the attention mechanism
© is implemented with a linear layer followed by a rectifier (ReLu), which serve
as a temporal weighting function that aggregates all the per-snippet prediction
probabilities into a per-video prediction. After training, the attention model
obtains a set of non-negative weights {w;},, so the weighted attention feature
is obtained by

RGB RGB RGB RGB

Aatt = gp(al yor s an ) = Z w;a; ’
[

F F FN __ aF

Aatt_(p(alv"'aaN)_szai7 (4)
7

WF __ WF WFy __ WF

Ay =@, ay) = E wia; .
7

For better readability, we give this new action feature vector A, a name as
attention vector. To emphasize, the attention model directly computes a soft
alignment, so that the gradient of the loss function is trained by backpropagation.

3.3 Implementation Details

During the training phase, images from all three modalities (RGB, optical flow
and warped optical flow) are cropped to 224 x 224. We employ cross modality pre-
training [12]. Firstly, the spatial stream (ResNet or BN-Inception) is pre-trained
on the ImageNet image classification dataset. Subsequently, these pre-trained
weights are used to initialize all 3 streams in the ATW. Each stream of the
proposed ATW is trained independently. We use a single frame (1) and a stack
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of (5) consecutive (warped) optical flow frame as inputs. Based on the standard
cross-entropy loss function, the SGD algorithm is used with a mini-batch size
of 128 videos. We use an initial learning rate of 0.001 for the spatial stream
and 0.005 for both temporal streams. For spatial stream, the learning rate is
multiplied by a factor of 0.1 every 2000 iterations. For both temporal streams,
the learning rate decay is divided into stages. Learning rates are multiplied by
0.1 at iterations 12000 and 18000. All momentums are fixed at 0.9.

During the testing phase, with each testing video, a fixed number of snippets
(80 in our experiments) are uniformly sampled. We use weighted average fusion
(1,1,0.5 for the spatial stream, optical flow stream, and warped optical flow
stream, respectively) to generate a per-video prediction.

Pytorch [39] is used in our experiments with optical flow and warped optical
flow extracted via OpenCV with CUDA 8.0. To speed up training, 2 NVIDIA
Titan Xp GPUs are used.

4 Experiments

Trimmed Action Datasets. We evaluate our approach on two popular action
recognition benchmarks, namely UCF-101 [20] and HMDB-51 [21]. The UCF-
101 dataset is one of the biggest action datasets containing 13320 videos clips
distributed in 101 classes. HMDB-51 dataset is a very challenging dataset with
6766 videos (3570 training and 1530 testing videos) in 51 classes. Evaluation
on these two trimmed datasets is performed using average accuracy over three
training/testing splits.

Baselines. Throughout the following section, we compare our proposed ATW
network with the standard base architecture, mostly two-stream with the single
segment of a video (N = 1). For network architecture, we choose the traditional
BN-Inception [37] for comparison in experiments.

Comparison with Different Consensus Functions. Firstly, we focus on
comparing the attention model from two optional consensus functions: (1) max
segmental consensus; (2) average segmental consensus. The max and weighted
average consensus function is injected at last fully-connected layer, whereas,
average consensus can be used after softmax layer. On the other hand, our at-
tention model is set before softmax layer. The experimental performance is sum-
marized in Table 1. We implement these four segmental consensuses with the
BN-Inception ConvNet [37] on the first split of UCF-101. The number of segmen-
tation N is set to 4. We use the weighted average fusion of three-stream outputs
to generate the video-level prediction. Average segmental consensus performs
slightly better than max function. The best result is obtained by the proposed
attention model. Thus it can be seen the usage of attention model significantly
improves temporal structure for action recognition.

Multi-Segment. Specially, in Table 3, we use RGB modality for training on
multi-segment temporal structure with BN-Inception ConvNet [37]. Note that if
N < 3, the model is oversimplified, and the performance on UCF-101 (splitl)
has seriously degraded. The attention model boosts the mAP with 85.80% on
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Table 1. Exploration of different segmental consensus functions on the UCF-101
dataset (splitl).

Consensus Function Spatial ConvNets Temporal ConvNets Two-Stream

Max 85.0% 86.0% 91.6%
Average 85.0% 87.9% 93.4%
Attention Model 86.7% 88.3% 94.6%

Table 2. Experiments of different initialization strategies for initializing the attention
layer’s parameters and several traditional activation functions on the UCF-101 dataset
(splitl). Specifically, weight = 1/N (NN = 4) equivalent to average consensus.

Initialization Spatial-Stream ‘Activation Function Spatial-Stream
weight = 1/N 84.44% tanh 84.91%
weight = 1 85.17% |sigmoid 85.29%
random gaussian 85.80% relu 85.80%

the UCF-101 dataset and 53.88% on HMDB-51 dataset (N=4), resulting from
the successfully reduced training error. This comparison verifies the effectiveness
of the soft attention mechanism on long-range temporal structure.
Parameters Initialization and Activation Function. As we train the pro-
posed ATW CNN, an appropriate initialization of the attention layer’s param-
eters is crucial. We compare different initialization strategies: (1) the weight w;
is set to 1, bias is 0; (2) the weight w; is set to %, bias is 0; (3) random Gaus-
sian distribution initialization. In addition, on behalf of finding the most fitting
activation functions, we tested several traditional activation functions in the at-
tention layer. As shown in Table 2, on the UCF-101 dataset, 1 for weight and 0
for bias initialization achieves 85.80% on the top of the three.

Comparison with State-of-the-arts. We present a comparison of the perfor-
mance of Attention-based Temporal Weighted CNN and previous state-of-the-art
methods in Table 4, on UCF-101 and HMDB-51 datasets. For that we used a
spatial ConvNet pre-trained on ImageNet, the temporal ConvNet was trained
by cross-modality pretraining. We choose ResNet [36] for network architecture.
As can be seen from Table 4, both our spatial and temporal nets alone out-
perform the hand-crafted architectures of [18,40-42] by a large margin. The
combination of attention improves the results and is comparable to the very
recent state-of-the-art deep models [10,12,14,43-48].

Visualization. To analyze the ability of the proposed attention model and to
select key snippets from long-range temporal multi-segment, we visualize what
the proposed model has learned on frame-level, which can help to understand
the operation of attention interpreting the feature activity. We test our model on
several videos to acquire the expected value of the action feature, which can map
this attention back to the input temporal dimension. Fig. 3 presents what input



Attention-based Temporal Weighted CNN for Action Recognition 9

Table 3. Exploration of ATW CNN with more number of segments on the UCF-101
dataset and HMDB-51 dataset (splitl).

Spatial-Stream Accuracy
N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8

UCF-101  83.33% 83.89% 84.80% 85.80% 85.29% 85.21% 85.04% 85.55%
HMDB-51 50.07% 53.33% 53.01% 53.88% 53.33% 55.36% 53.20% 53.14%

Dataset

Table 4. Comparison of our method with other state-of-the-art methods on the UCF-
101 dataset and HMDB-51 dataset.

HMDB-51 \ UCF-101
Model Accuracy ‘ Model Accuracy
DT [40] 55.9% |DT [40] 83.5%
iDT [18] 57.2% |iDT [18] 85.9%
BoVW [41] 61.1% |BoVW [41] 87.9%
MoFAP [42] 61.7% |MoFAP [42] 88.3%
Two Stream [10] 59.4% |Two Stream [10] 88.0%
VideoDarwin [47] 63.7% |C3D [14] 85.2%
MPR [48] 65.5% |Two stream +LSTM [11] 88.6%
FsrCON (SCI fusion) [43] 59.1% |FsrCN (SCI fusion) [43] 88.1%
TDD+FV [44] 63.2% |TDD-+FV [44] 90.3%
LTC [45] 64.8% |LTC [45] 91.7%
KVMF [46] 63.3% |KVMF [46] 93.1%
TSN (3 modalities) [12] 69.4% |TSN (3 modalities) [12] 93.4%
Proposed ATW 70.5% ‘Proposed ATW 94.6%

images originally caused an attention value. The first row shows the top ranked
four frames with their corresponding attention weights, and the second row shows
the lowest ranked four frames. The attention model pays more attention to the
relevant frames than irrelevant frames, and this means that the attention model
always focuses on the foreground over time.

5 Conclusion

We presented the Attention-based Temporal Weighted Convolutional Neural
Network (ATW), which is a deep multi-stream neural network that incorpo-
rates temporal attention model for action recognition. It fuses all inputs with a
series of data-adaptive temporal weights, effectively reducing the side effect of
redundant information/noises. Experimental results verified the advantage of the
proposed method. Additionally, our ATW can be used for action classification
from untrimmed videos, and we will test our proposed method on other action
datasets in our future work.
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Fig. 3. Visualization of the focus of attention on four videos from UCF-101 dataset over
temporal dimension. The model learns to focus on the relevant parts. The attention
weight is given on top of each image. The higher the attention weight (w;) of the frame,
the more critical to classify the action.
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