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ABSTRACT
Most prominent temporal action localization methods are of
the fully-supervised type, which rely heavily on frame-level
labels, which could be prohibitively expensive to annotate.
Thanks to recent developments on the Weakly-supervised
Temporal Action Localization (W-TAL), this alternative
paradigm requires only video-level labels in training, allevi-
ating such annotation efforts. Specifically, we present Action
Coherence Network (ACN) for W-TAL, which features a new
coherence loss that better supervises action boundary learning
and facilitate proposal regression. In addition, a purpose-built
fusion module is proposed for localization inference based
on features extracted by two streams of convolutional neural
network. Overall, the proposed ACN achieves state-of-the-art
W-TAL performance on two challenging datasets (THU-
MOS14 and ActivityNet1.2, particularly ACN attains mAP
of 24.2% on THUMOS14 under IoU threshold 0.5), which is
approaching some recent fully-supervised TAL methods.

Index Terms— weakly-supervised, temporal action lo-
calization, coherence loss

1. INTRODUCTION

Temporal action localization is an important learning prob-
lem for high-level video understanding tasks, such as event
detection, video summarization, and visual question answer-
ing. Thanks to the advances of deep learning, multiple break-
throughs have been made on temporal action localization [1,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Most of these prominent
methods require full supervision during training, i.e., training
videos need precise annotations of all the start and end tem-
poral locations of all action instances. However, large-scale
labeling is expensive and time-consuming, and could be in-
consistent due to ambiguous transitional actions.

In contrast, video-level label could potentially be auto-
matically obtained with textual search terms on video shar-
ing websites, without incurring significant financial cost or
labeling delays. With only the video-level labels in train-
ing data, the Weakly-supervised Temporal Action Localiza-
tion (W-TAL) paradigm proposed by Sun et al. [13] offers
an appealing alternative and multiple efforts have been made
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Fig. 1. Overview of the proposed ACN inference. With each
untrimmed video, the RGB and optical flow modalities are
independently processed by two streams and produce respec-
tive action proposals, which are ultimately reconciled by a
purpose-built fusion module for final localization.

in W-TAL. Hide-and-Seek [14] randomly hides parts of the
input to guide the network to learn the most relevant parts.
UntrimmedNet [15] is an end-to-end framework, which uses
classification results to detect important snippets. AutoLoc
[16] proposes the Outer-Inner-Contrastive (OIC) loss to de-
tect action boundaries and uses it to regress proposals. W-
TALC [17] achieves the state-of-the-art results, which divides
the network into two separate sub-networks and introduces
co-activity similarity loss.

Despite these recent efforts, two major challenges still
persist. (1) Most current W-TAL methods only exploit the
classification scores and attention weights to determine ac-
tion instance boundaries without explicit constrains on frame
appearance changes, which could lead to sub-optimal perfor-
mance. To address this challenge, we proposed the new co-
herence loss that accounts for both appearance coherence and
snippet-level classification activation. (2) Inspired by two-
stream CNNs [18], we speculate that the characteristics of
RGB and optical flow modalities are largely ignored in the de-
facto standard practice of direct concatenation-based stream-
fusion. Intuitively, RGB stream is sensitive to scene transi-



Fig. 2. RGB stream of the proposed ACN. (1) UntrimmedNet is used to encode the snippet-level feature. (2) We slide multiple
regression networks along the feature sequence and Snippet-level Classification Prediction (SCP), with each network generating
and regressing proposals independently. (3) Non-Maximum Suppression (NMS) eliminatess redundant proposals.

tions, but tends to neglect slight movements. Flow stream is
more sensitive to slight movements but may introduce lots of
noises during scene transitions or camera movements. In this
paper, a purpose-built fusion module is proposed to account
for the different modality characteristics and produces empir-
ically better temporal localization inferences. The overview
of our proposed Action Coherence Network (ACN) is shown
in Figure 1.

2. COHERENCE LOSS

An ideal action instance is assumed to have distinctive tem-
poral boundaries, which are estimated in Autoloc [16] with
the OIC loss. Formally, given the Snippet-level Classification
Prediction (SCP) S ∈ RC×T of a video with T snippets and
C action categories, the OIC loss for a proposal [xs, xe] of the
action class k ∈ 1, · · · , C is

LOIC =

∫Xe

Xs
S(k, u)du−

∫ xe

xs
S(k, u)du

(Xe −Xs + 1)− (xe − xs + 1)
−
∫ xe

xs
S(k, u)du

xe − xs + 1
,

(1)
whereXs, Xe are the inflated boundaries and S(k, n) denotes
the matrix element corresponding to SCP for the n-th snippet
of class k.

Therefore, the OIC loss focuses exclusively on high acti-
vation for snippet-level classification without explicit terms
relevant to the action instance content. Intuitively, we ar-
gue that a well-defined loss function should explicitly pro-
mote “clear” appearance distinctions between its preceding
and succeeding snippets in both the RGB and Flow represen-
tation. Following such intuition, the coherence term in the
coherence loss is formulated as an arithmetic average of the
cosine similarities between the action area and its “start area”
and “end area”. Given a proposal [xs, xe] and inflated bound-
ary [Xs, Xe], its start area feature Rs, end area feature Re and

action area feature Ra are defined respectively as

Rs =

∫ xs

Xs
F(u)du

xs −Xs + 1
,Re =

∫Xe

xe
F(u)du

Xe − xe + 1
,Ra =

∫ xe

xs
F(u)du

xe − xs + 1
,

(2)
and its corresponding coherence term Lc is computed as

Lc =
1

2

(
〈Ra,Rs〉

〈Ra,Ra〉
1
2 〈Rs,Rs〉

1
2

+
〈Ra,Re〉

〈Ra,Ra〉
1
2 〈Re,Re〉

1
2

)
.

(3)
where F(n) denotes the n-th snippet feature representation,
〈, 〉 denotes inner product.

With the new coherence term Lc accounting for the ap-
pearance distinctions, the proposed coherence loss L is intro-
duced as a hybrid of appearance coherence and snippet-level
classification activation,

L = αLOIC + (1− α)(Lc − 1), (4)

where α ∈ (0, 1) is a trade-off constant empirically set to 0.6
and fixed thereafter.

3. ACTION COHERENCE NETWORK

3.1. Video Representation

We first divide each video into non-overlapping fixed length
(15 frames) snippets and extract snippet-level feature with
UntrimmedNet [15] (soft selection method). The Inception
network with Batch Normalization is used as network back-
bone for each stream. Features are extracted as the 1024-
dimensional tensor at the global average pooling layer. Given
a video with T snippets, we denote the RGB feature and op-
tical flow feature as Fr,Ff ∈ R1024×T respectively. In addi-
tion, the RGB and optical flow attention weight Ar,Af ∈ RT

and SCP Sr,Sf ∈ RC×T are also obtained by Untrimmed-
Net, respectively.



3.2. Proposal Regression

For conciseness, we illustrate only the RGB stream of ACN in
Figure 2 as an example of proposal regression1. Inspired by
the Faster R-CNN [19], we feed video representation Rr into
multiple regression networks, each consisting of 3 temporal
convolutional layers and assigned with a fixed anchor size
P .The first two convolutional layers have 256 dilated filters
with kernel size 3 temporally and stride 1. The receptive field
of all regression networks are identical to their anchor size
P to ensure sufficient (but not excessively redundant) context
information. Specifically, the dilation of the first two layers is
P
4 , leading to a receptive field of (P4 + P

4 + 2)× 2 + 1 ≈ P .
The last convolutional layer has 2 filters with kernel size 1
and stride 1. In addition, zero padding is used for the first two
layers to ensure the matching temporal location outputs.

Given anchor size P , we initialize action proposals at
all possible temporal snippet locations as {(xs,i, xe,i)}T−P

i=1 ,
such that xe,i − xs,i = P . Subsequently, these initial pro-
posals are refined by the corresponding regression network
(details in Section 4.2), with which generating respective
temporal regression results {rs,i}Ti=1 and {re,i}Ti=1, so that
the estimated proposal boundaries (x̂s,i, x̂e,i) are:

x̂s,i = xs,i + P ·
(

sigmoid(rs,xs,i
)− 1

2

)
, (5)

x̂e,i = xe,i + P ·
(

sigmoid(re,xe,i)−
1

2

)
. (6)

In this manner, each boundary is able to regress to any tem-
poral location within its receptive field.

3.3. Proposal Evaluation

We inflate the temporal boundaries of each proposal [xs, xe]
to [Xs, Xe], whereXs = xs− P

4 andXe = xe+
P
4 to account

for the context information. We define the confidence score of
a proposal as the negation of its coherence loss, namely −L.

During training, the algorithm traverses every action cat-
egory with classification score over the predefined threshold
of 0.1 to check the SCP values. If the SCP of a temporal snip-
pet position is lower than a threshold (set to 0.1), all propos-
als containing this position are discarded. Subsequently, we
only keep one proposal per snippet location which achieves
the highest score among all proposals covering this location
of different anchor sizes P and discard all others. The over-
all score is the arithmetic average of all remaining proposal
scores.

During testing, Non-Maximum Suppression (NMS) is
performed with overlap Intersection-of-Union (IoU) thresh-
old 0.4, which is empirically determined via cross-validation.

1The Flow stream shares similar settings.

3.4. Proposal Fusion

With the obtained proposals from RGB and Flow streams, a
fusion module is proposed for ACN to select and reconcile
such proposals. Empirically, the Flow stream typically pro-
vides more accurate proposals thanks to its sensitivity to even
subtle motions, which statistically corresponds well with the
start and end areas of action instances. Based on this obser-
vation, we use Flow stream as the primary source and RGB
stream as the auxiliary one. Let {pf,j}

Nf

j=1 and {pr,j}Nr
j=1 de-

note proposals from the Flow and RGB steam, respectively,
with Nf and Nr denoting the number of kept proposals in
Flow and RGB stream, respectively.

The fusion module first retains all pf,j , j = 1, · · · , Nf

and simultaneously discounts all RGB proposal confidence
score by a factor2 of 2. Subsequently, for each pr,j , we calcu-
late its overlap IoUs with all pf,j , j = 1, · · · , Nf and obtain
a retention score I(pr,j) by max-pooling,

I(pr,j) = max
(
IoU(pr,j , pf,1), · · · , IoU(pr,j , pf,Nf

)
)
.
(7)

The reconciled proposals are the union of all pf,j , j =
1, · · · , Nf and the set of pr,j with I(pr,j) < 0.4.

4. EXPERIMENT

4.1. Dataset and Evaluation

THUMOS14 [20] dataset contains 200 untrimmed videos in
validation set and 213 untrimmed videos in test set with 20
classes for the temporal action localization task. We use the
validation set for training and the test set for testing.
ActivityNet v1.2 [21] covers 100 action classes, with train-
ing set containing 4819 untrimmed videos and the valida-
tion set containing 2383 untrimmed videos, which are used
in our training and testing, respectively. This dataset is pro-
cessed according to the settings in UntrimmedNet [15] and
Autoloc [16] for fair comparison.

We use mean Average Precision (mAP) at different levels
of IoU thresholds to measure the performance of all localiza-
tion results.

4.2. Implementation Details

ACN is implemented on PyTorch [22]. We train each stream 3
epochs with the stochastic gradient descent optimizer, an ini-
tial learning rate of 0.001, and a decay factor of 10 per epoch.
The mini-batch size is set to 4. To alleviate the background
noise, attention thresholding is employed during testing, all
snippets with attention weight lower than a threshold (empir-
ically fixed at 5 for Flow stream and 7 for RGB stream) are
discarded. Using grid search in cross-validation, we set α to
0.6 in Equation (4) for both streams and both datasets. We

2To alleviating its overfitting tendency, the factor 2 is empirically deter-
mined via cross validation.



Table 1. Comparison with state-of-the-art weakly-supervised methods on ActivityNet v1.2 validation set.

Method mAP@IoU Avg0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
UntrimmedNet [15] 7.4 6.1 5.2 4.5 3.9 3.2 2.5 1.8 1.2 0.7 3.6

Autoloc [16] 27.3 24.9 22.5 19.9 17.5 15.1 13.0 10.0 6.8 3.3 16.0
Ours-ACN 30.4 27.2 24.3 20.5 18.0 15.4 13.2 10.3 7.5 3.7 17.0

Table 2. Comparison with state-of-the-art weakly-supervised
methods on THUMOS14 test set.

Method mAP@IoU
0.3 0.4 0.5 0.6 0.7

Hide-and-Seek [23] 19.5 12.7 6.8 - -
UntrimmedNet [15] 28.2 21.1 13.7 8.3 4.2

STPN [24] 35.5 25.8 16.9 9.9 4.3
AutoLoc [16] 35.8 29.0 21.2 13.4 5.8

W-TALC+UNTF [17] 32.0 26.0 18.8 - 6.2
Ours-ACN 35.9 30.7 24.2 15.7 7.4

choose anchor sizes P of the snippet length 1, 2, 4, 8, 16,
32 for THUMOS14 and 16, 32, 64, 128, 256, 512 for Activi-
tyNet.

4.3. Comparison with State-of-the-arts

Performance results3 on ActivityNet v1.2 validation set are
presented in Table 1, where the proposed ACN outperforms
all existing state-of-the-art W-TAL methods. Particularly,
UntrimmedNet [15] did not report their temporal localiza-
tion performance on ActivityNet 1.2 in their paper, but they
publicly released their trained model and source codes, based
on which we re-evaluate and obtain the UntrimmedNet [15]
performance in Table 1.

The mAP comparison on THUMOS14 test set is summa-
rized in Table 2, where ACN outperforms all competing meth-
ods at all IoU thresholds.

4.4. Sensitivity and Ablation Study

Sensitivity and ablation analysis is carried out with localiza-
tion performance evaluated with different mAP@IoU thresh-
olds and with variations of ablated coherence loss.
Sensitivity Analysis on α. We test different α in Equation (4)
during both training and evaluating phases. The results are
measured with mAP@IoU 0.5 and are summarized in Table 3,
which justifies our empirical choice of α = 0.6.
Ablation Study on Proposal Scoring Method. As presented
in Section 3.3, the negation of Coherent loss L is also used
to score proposals. We included two additional variants of
ablated scoring methods (for both training and evaluating
phases), the coherence term −Lc only and OIC term −LOIC

only. The temporal localization performance on the RGB

3For fair comparison, the results of W-TALC+I3DF are not listed here,
because they used a more complicated backbone.

Table 3. Sensitivity analysis: α in Equation (4) on THU-
MOS14.

Modality mAP@IoU 0.5 at α values
0.4 0.5 0.6 0.7 0.8

RGB 8.8 9.1 9.7 9.6 9.4
optical flow 21.5 22.2 22.8 22.7 22.6

Table 4. RGB stream-only localization performance with dif-
ferent scoring methods on THUMOS14 test set.

Method mAP@IoU
0.3 0.4 0.5 0.6 0.7

−Lc 11.3 7.8 4.2 1.9 0.7
−LOIC 19.6 14.4 9.1 4.5 1.4
−L 20.9 14.8 9.7 4.5 1.9

Table 5. Flow stream-only localization performance with dif-
ferent scoring methods on THUMOS14 test set.

Method mAP@IoU
0.3 0.4 0.5 0.6 0.7

−Lc 13.7 10.0 6.8 3.9 1.7
−LOIC 33.4 28.1 22.1 14.4 6.9
−L 35.2 29.7 22.8 15.0 7.2

stream-only and Flow stream-only is summarized in Table 4
and Table 5, respectively. The performance advantage of −L
as scoring method verifies that both terms are indispensable
and both are jointly contributing to the scoring.

5. CONCLUSION

In this paper, we have proposed the ACN for weakly-supervised
temporal action localization with a new coherence loss and a
purpose-built fusion module reconciling both optical flow and
RGB-based action proposals. Experiments on two datasets
have verified the performance advantage, with additional
sensitivity and ablation analysis demonstrating some design
intuitions.
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