
1

Action Coherence Network for Weakly-Supervised
Temporal Action Localization

Yuanhao Zhai, Member, IEEE, Le Wang, Senior Member, IEEE, Wei Tang, Member, IEEE,
Qilin Zhang, Member, IEEE, Nanning Zheng, Fellow, IEEE, and Gang Hua, Fellow, IEEE

Abstract—Weakly-supervised Temporal Action Localization
(W-TAL) aims at simultaneously classifying and locating all ac-
tion instances with only video-level supervision. However, current
W-TAL methods have two limitations. First, they ignore the
difference in video representations between an action instance
and its surrounding background when generating and scoring
action proposals. Second, the unique characteristics of the RGB
frames and optical flow are largely ignored when fusing these
two modalities. To address these problems, an Action Coherence
Network (ACN) is proposed in this paper. Its core is a new
coherence loss which exploits both classification predictions
and video content representations to supervise action boundary
regression and thus leads to more accurate action localization
results. Besides, the proposed ACN explicitly takes into account
the specific characteristics of RGB frames and optical flow
by training two separate sub-networks, each of which is able
to generate modality-specific action proposals independently.
Finally, to take advantage of the complementary action proposals
generated by two streams, a novel fusion module is introduced
to reconcile them and obtain the final action localization results.
Experiments on the THUMOS14 and ActivityNet datasets show
that our ACN outperforms the state-of-the-art W-TAL methods,
and is even comparable to some recent fully-supervised methods.
Particularly, ACN achieves a mean average precision of 26.4%
on the THUMOS14 dataset under the IoU threshold 0.5.

Index Terms—Temporal action localization, weakly-supervised
learning.

I. INTRODUCTION

TEMPORAL Action Localization (TAL) aims at classifying
and locating all action instances in an untrimmed video.

It can be applied to many high-level video understanding tasks
such as event detection [1]–[3] and video summarization [4], [5].
While fully-supervised TAL methods [6]–[23] have achieved
promising performance, they rely on precise annotations of
categorical label and the start and end temporal locations
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Fig. 1. An overview of the inference process of the proposed ACN. Given
an untrimmed video, modality-specific action proposals are generated by two
sub-networks, i.e., the RGB stream and the optical flow stream, which are
reconciled by a novel fusion module to get the final action localization results.

of all action instances. This kind of labeling is expensive
and time-consuming for large-scale datasets, and could be
inconsistent due to ambiguous action transitions [24], [25].
This paper considers a more cost-effective setting: Weakly-
supervised Temporal Action Localization (W-TAL), which
only requires video-level categorical labels to perform training.
These video-level labels are much cheaper to annotate, and
could be automatically obtained with textual search terms on
video sharing websites. Thus, W-TAL is more practical than
its fully-supervised counterpart.

Recent years have witnessed a significant performance
improvement on W-TAL [26]–[35]. There are two mainstream
methods, i.e., thresholding-based methods and two-stage meth-
ods. Thresholding-based methods [29]–[33] first extract RGB
and optical flow features via pre-trained models, and then
jointly train a classification module that generates Snippet-
level Classification Predictions (SCPs) and an attention module
that produces Snippet-level Attention Predictions (SAPs). The
final TAL results are obtained by directly thresholding the
SCPs and SAPs. Two-stage methods [34], [35] first initialize
action proposals as anchors of predefined lengths at all temporal
locations, and then regress the durations and center locations
of these action proposals via additional regression networks.

Despite these recent efforts, two major challenges still persist.
On one hand, most methods only exploit the classification
scores and attention weights to generate and score action
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proposals. They do not have an explicit mechanism to model
the video content changes between video frames, e.g., caused
by action starts or ends, which is critical for accurate action
localization. As a result, the thresholding-based methods often
generate fragmentary action proposals inside an action instance
whose SCPs are fluctuating. Two-stage methods also suffer
from this problem because fluctuating SCPs inevitably decrease
the confidence score of an action proposal.

On the other hand, how to fuse the predictions from two
modalities (i.e., RGB and optical flow) for W-TAL has not been
well explored. In action recognition, two-stream Convolutional
Neural Networks (CNNs) [36] achieve a significant perfor-
mance boost by fusing the two-stream classification scores via
a weighted summation. This indicates that the two modalities
are complementary. However, the unique characteristics of
the RGB and optical flow features are usually ignored in the
conventional fusion methods. Intuitively, the RGB stream is
sensitive to scene transition and large motion displacement
but tends to ignore small movements. The flow stream is
appearance-invariant [37], and much more sensitive to small
movements but may introduce noise during scene transition
or camera movement. Therefore, it is desirable to develop an
effective way to integrate these two modalities.

This paper presents an Action Coherence Network (ACN)
to tackle the aforementioned challenges. For the first problem,
inspired by the Outer-Inner-Contrastive (OIC) Loss [34], the
authors speculate that a good action proposal should have two
qualities: (1) the SCPs within it should be significantly higher
than those in the surrounding background, and (2) the video
representations within it should differ with those outside the
action instance. Therefore, a new coherence loss is introduced
to account for both qualities. To address the second challenge,
two separate sub-networks are trained by taking RGB frames
and optical flow as their respective input to exploit the modality-
specific features. The two sub-networks share similar settings
and both are trained with the coherence loss. As a result, they
are able to generate complementary action proposals by taking
advantage of the unique characteristics of each modality.

Figure 1 presents the overview of ACN, which consists of
two sub-networks and a fusion module. Given an input video,
features of two modalities are first extracted with pre-trained
2D/3D backbones. Then, action recognition is performed on
two modalities respectively to obtain the SCPs and SAPs.
After that, initial action proposals with different predefined
anchor lengths are generated at all temporal locations. For each
stream, a group of regression networks is trained using the
coherence loss to regress boundaries of each action proposal
to more precise temporal locations. Each stream is able to
generate modality-specific action proposals independently. Non-
Maximum Suppression (NMS) is then performed to remove
duplicated action proposals, and a fusion module is finally
proposed to select and combine the two-stream outputs and
generate the final TAL results.

In a nutshell, the main contributions are as follows:

• A new coherence loss is proposed to model both SCPs
and video representations on action boundaries. It can sig-
nificantly improve the performance of action localization.

• A novel Action Coherence Network (ACN) is proposed for
W-TAL. It has two separate sub-networks taking as input
RGB frames and optical flow, respectively. Furthermore,
a new fusion module is designed to reconcile the action
proposals from the two streams and generate the final
TAL results.

• Experiments on two challenging datasets (i.e., THU-
MOS14 and ActivityNet) demonstrate that the proposed
method outperforms state-of-the-art methods. Extensive
ablation studies are conducted to validate the contribution
of each component.

A short conference version of this paper appeared in [38].
This paper extends the previous version in four aspects. (1)
This paper provides more implementation details of ACN. (2)
The overfitting problem in the regression network training is
addressed. (3) More experiments are conducted to analyze the
effectiveness of each component in ACN. (4) The strengths
and limitations of our proposed method and future work are
discussed.

This paper is organized as follows. Section II briefly reviews
the related work. Section III presents the framework of the
proposed ACN. The experiments are presented in Section IV.
Finally, Section V presents the conclusion.

II. RELATED WORK

Related work on action recognition, fully-supervised tempo-
ral action localization, and weakly-supervised temporal action
localization are briefly reviewed in this section.

A. Action Recognition

Action recognition has been extensively studied in the past.
Traditional methods [39]–[41] extract hand-crafted represen-
tations to model spatio-temporal information. Recently, deep
learning-based methods show great performance improvement.
Among them, there are two mainstream methods: two-stream
networks [36], [42]–[44] exploit appearance and motion infor-
mation from RGB and optical flow respectively; 3D CNNs [8],
[45] learn spatio-temporal clues directly from consecutive video
frames. Two-Stream Inflated 3D ConvNet (I3D) [46] replaces
the 2D CNNs in two-stream networks with 3D CNNs to model
the temporal information. Besides, several works [44], [47]–
[49] try to model long-term temporal information in action
recognition. Several efforts [50], [51] are made to reduce the
computational cost in action recognition. There are also several
attempts [52]–[55] focusing on directly learning motion clues
from RGB frames instead of calculating hand-crafted optical
flow.

B. Fully-supervised Temporal Action Localization

The task of temporal action localization is to temporal
localize and classify all action instances in an untrimmed video,
and the fully-supervised type requires frame-level annotations
of all action instances during training. Some methods [6],
[56], [57] exploit a sliding window or a predefined temporal
duration to generate action proposals. Inspired by deep learning-
based object detection methods, such as Regions with CNN
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Fig. 2. A single stream overview of the proposed ACN. (1) Action Recognition. Pre-trained models are used to extract snippet-level features. The classification
model is built upon the snippet-level features, and generates Snippet-level Classification Predictions (SCPs). (2) Action Proposal Regression. Initial action
proposals with predefined anchor lengths are generated at all temporal locations. The proposals with a certain anchor length are regressed with a corresponding
regression network, which is trained with the coherence loss and regresses the boundaries of the proposals to more precise temporal locations. (3) Non-Maximum
Suppression. Non-Maximum Suppression (NMS) eliminates redundant action proposals.

features (R-CNN) [58], many methods [7]–[11], [16], [17],
[59] implement a “propose and classify” scheme, where
action proposals are first generated and then classified. Some
methods [9], [11], [12], [16] apply the Faster R-CNN [60]
framework to TAL. Some recent methods [17], [20], [21] focus
on generating action proposals with more flexible durations.
Zeng et al. [23] introduce graph convolutional networks to
exploit the relations among action proposals.

Despite the success of fully-supervised TAL, its depen-
dence on temporal annotation, which is expensive and time-
consuming, greatly impede its application in real-world sce-
narios.

C. Weakly-Supervised Temporal Action Localization

Weakly-supervised Temporal Action Localization (W-TAL)
aims to achieve temporal action localization with only video-
level action categorical labels available during training. Since
the frame-level labels are not available during training, several
existing methods [27], [28], [30]–[32], [34], [35], [61] adopt a
multiple instance learning framework, where a video is treated
as a bag of frames/snippets to perform action classification.
The trained model generates a per-snippet/frame classification
prediction sequence, which is further used to generate the
action proposals by thresholding. UntrimmedNet [27] is one
of the first W-TAL method, and it uses an attention module
to evaluate the relative importance of every snippet and a
classification module to perform the snippet-level classification,
and generates localization results by thresholding the atten-
tion and classification activation sequences. Sparse Temporal
Pooling Network (STPN) [28] improves UntrimmedNet by
adding a sparsity loss to enforce the sparsity of the segment
selection. Hide-and-Seek [26] randomly hides parts of the
input video to guide the network to learn the most relevant
parts. Paul et al. [30] propose a co-activity similarity loss to
enforce the learned features to be similar if they belong to the
same action category. Liu et al. [31] employ multi-attention
branches to learn different stages of an action. 3C-Net [33]
proposes a classification loss, a count loss and a center loss

to improve feature discriminability and delineate proximate
action sequences for W-TAL. DGAM [62] learns an attention
value with variational auto-encoder to separate actions and
context. There are also several works [32], [61] aiming to learn
a richer notion of an action with background classification.
TSCN [63] proposes an attention normalization loss to replace
the background learning, and proposes a pseudo ground truth
learning to remove false positives. Some recent works [64],
[65] attempt to separate action and context for better action
boundary learning.

Apart from these thresholding-based methods, AutoLoc [34]
first adopts a two-stage framework in W-TAL. They first tra-
verse all temporal locations with predefined anchors to generate
initial action proposals, and then regress the boundaries of
them to more precise temporal locations with an Outer-Inner-
Contrastive (OIC) loss, which aims at maximizing the activation
difference between the action proposal area and its contextual
area. CleanNet [35] improves AutoLoc [34] by leveraging the
temporal contrast of Snippet-level Classification Prediction
(SCP) to regress the action proposals to more precise temporal
locations.

The proposed method draws the inspiration from Au-
toLoc [34], and differs from AutoLoc in three aspects. (1) The
proposed coherence loss not only accounts for the prominence
of SCPs, but also detects action instances based on their
distinctive video representation. (2) Two sub-networks are
trained to learn modality-specific action proposals, which are
then reconciled by a fusion module. By contrast, AutoLoc only
trains one network with concatenated RGB and Flow features
as input. (3) The proposed regression networks are designed to
make the receptive field the same as the regression field while
maintaining a small number of parameters. As discussed in
Section IV-D, all these differences contribute to the superiority
of the proposed ACN.

III. ACTION COHERENCE NETWORK

This section introduces the proposed Action Coherence
Network (ACN), which consists of two sub-networks (i.e.,
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an RGB stream and a flow stream), and a fusion module (see
Figure 1). As shown in Figure 2, each stream is composed of
three parts respectively for action recognition, action proposal
regression, and Non-Maximum Suppression. The two streams
share similar settings and both are trained with the proposed
coherence loss, which can supervise action boundary learning
and facilitate action proposal regression. Given different input
modalities, the two sub-networks can generate action proposals
with different characteristics. And these action proposals are
finally reconciled via a fusion module. It has been verified from
the experiments that the two-stream outputs are complementary
and together contribute to a higher performance.

Section III-A first gives the definition of the Weakly-
supervised Temporal Action Localization (W-TAL) problem.
As the two streams share similar settings, and they only differ
in the input modality (i.e., RGB frames or optical flow),
Section III-B – Section III-D detail the single-stream structure.
Finally, Section III-E introduces how to effectively reconcile
the outputs from two streams.

A. Problem Formulation

The task of W-TAL aims to temporally locate and classify all
action instances in an untrimmed video. Specifically, given an
untrimmed video, only its video-level categorical label y ∈ RC

is available during training, where y is a normalized multi-hot
vector. The k-th element of y (i.e., yk) is set to 1/N if the
video contains action instances of the k-th category, where
N is the number of action categories occurred in the video.
During testing, the network is expected to output a set of action
proposals {pi|pi = (xs,i, xe,i, ci, si)}Mi=1 for each testing video,
where M is the number of output proposals and pi is the i-th
action proposal, which is a tuple containing a start time xs,i,
an end time xe,i, a category ci and a confidence score si.

B. Action Recognition

The input videos are divided into non-overlapping fixed-
length snippets. Then, a pre-trained deep network (e.g., I3D
network [46]) is used to extract the RGB frame/optical flow
snippet-level features. Specifically, given a video with T
snippets, the extracted features are denoted as F ∈ RD×T ,
where D represents the feature dimension. The extracted
features provide a high-level representation of the input video,
and are fed to the classification and attention layers of the
network.

Following UntrimmedNet [27], the attention weights a ∈ RT

and the classification scores S ∈ RC×T are obtained by two
fully connected (fc) layers with 1 and C output channels,
respectively. The Snippet-level Classification Predictions (SCPs)
Ŝ and action recognition result ŷ ∈ RC are calculated as:

Ŝ(k, t) =
exp(S(k, t))∑C
i=1 exp(S(i, t))

, (1)

ŷ =
1

T

T∑
t=1

exp(a(t))∑T
i=1 exp(a(i))

Ŝ(t), (2)

where S(k, t) and Ŝ(k, t) represent the classification score
and SCP at temporal location t and category k, respectively,

and Ŝ(t) and a(t) represent the SCPs and attention weight at
temporal location t, respectively.

The two layers are trained with the cross entropy loss:

LCE = −
C∑

k=1

yk log ŷk, (3)

where ŷk is the predicted probability of the target video
containing action instances in the k-th category. The parameters
in the two layers are fixed after the training of action
recognition.

C. Action Proposal Regression

This subsection describes the action proposal regression
process in a single stream. Without frame-level boundary
annotation, it is impossible to directly regress the boundaries
of action proposals with an L1-norm distance like in the fully-
supervised methods [9], [11], [12], [16]. Instead, this paper
introduces a proxy loss – coherence loss for each proposal,
and by minimizing the coherence loss, the proposal boundaries
are expected to regress to more precise temporal locations.

Action Proposal Initialization. Inspired by Faster R-
CNN [60], initial action proposals are generated at all temporal
locations with a group of predefined anchor lengths (number of
snippets). Formally, given an anchor size P , action proposals
are initialized as {(xs,i, xe,i)}T−P

i=1 , such that xe,i − xs,i = P ,
xs,1 = 0 and xs,T−P = T−P−1. To account for the contextual
information, the inflated start and end boundaries (Xs, Xe) for
action proposal (xs, xe) are defined as Xs = xs − P/4 and
Xe = xe + P/4.

Coherence Loss. An ideal action proposal is expected to
have distinctive temporal boundaries, which is modeled via the
Outer-Inner-Contrastive (OIC) loss in AutoLoc [34]. Formally,
given the SCPs Ŝ ∈ RC×T of a video with T snippets and C
action categories, the OIC loss for an action proposal (xs, xe)
of the action category k ∈ {1, · · · , C} is defined as

LOIC =

∫Xe

Xs
Ŝ(k, t)dt−

∫ xe

xs
Ŝ(k, t)dt

(Xe −Xs + 1)− (xe − xs + 1)

−
∫ xe

xs
Ŝ(k, t)dt

xe − xs + 1
.

(4)

The goal of the OIC loss is to regress the start boundary
xs and end boundary xe of an action proposal so that the
temporal regions immediately outside the action proposal have
low activation (the first term) while the area within the action
proposal has high activation (the second term).

Therefore, the OIC loss only focuses on the snippet-level
classification predictions while ignoring the content of the
action instance. Intuitively, the video representations of an
action instance should also be different from those of snippets
immediately preceding and succeeding the action instance.
For example, an action may contain a preparation stage, a
performing stage and an ending stage, and they should differ
not only in the SCPs but also in their feature representations.
Following this intuition, the appearance term in the coherence
loss is formulated as an arithmetic average of the cosine
similarities between the action area and its “start area” and
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Fig. 3. Illustration of the computation process of the proposed coherence
loss Lc. It consists of two terms: an appearance term La that calculates the
negative cosine similarity between the action proposal feature and its context
feature; an OIC term LOIC that computes the difference between the action
proposal classification score and its context classification score.

“end area”. Formally, given an action proposal (xs, xe) and its
inflated boundary (Xs, Xe), the features of its start area Rs,
the features of its end area Re and the features of its action
area Ra are defined respectively as

Rs =

∫ xs

Xs
F(t)dt

xs −Xs + 1
, (5)

Re =

∫Xe

xe
F(t)dt

Xe − xe + 1
, (6)

Ra =

∫ xe

xs
F(t)dt

xe − xs + 1
, (7)

where F(t) denotes the feature representation of the t-th snippet,
and the feature representation of a temporal area is obtained
via average pooling. Here, an appearance term La accounting
for the appearance distinctions between the action area and its
start area and end area is introduced as

La =
1

2

〈Ra,Rs〉
〈Ra,Ra〉

1
2 〈Rs,Rs〉

1
2

+

1

2

〈Ra,Re〉
〈Ra,Ra〉

1
2 〈Re,Re〉

1
2

,

(8)

where 〈, 〉 denotes inner product.
The proposed coherence loss Lc (illustrated in Fig. 3) is

defined as a linear combination of the new appearance term
La and the OIC term:

Lc = αLOIC + (1− α)(La − 1), (9)

where α ∈ [0, 1] is a trade-off hyper-parameter empirically set
to 0.6 and fixed thereafter. The coherence loss promotes action
proposals having not only high classification activation but also
video representations distinctive from its context area.

Action Proposal Regression. The boundaries of initial
action proposals are regressed with a set of regression networks.
Specifically, each anchor size is assigned an exclusive regres-
sion network, and the receptive field size of each regression
network is designed to be identical to its corresponding anchor
size P to include sufficient (but not excessively redundant)

contextual information. The regression network takes as input
the video snippet-level features F, and outputs a set of start
and end boundary regression results {rs,i}Ti=1 and {re,i}Ti=1.

To be specific, each regression network consists of three
temporal convolutional layers. Denote a temporal convolutional
layer with number of kernels nk, temporal kernel size ns, dila-
tion rate nd and activation function Ω as Conv(nk, ns, nd,Ω).
For the regression network that corresponds to anchor size
P , the first two layers are set to Conv(256, 3, dP/4e,ReLU).
The third output layer is set to Conv(2, 1, 1,Sigmoid), where
the two output channels generate the start and end bound-
ary regression results {rs,i}Ti=1 and {re,i}Ti=1, respectively.
In this way, the receptive field size for the last layer is
(P/4 + P/4 + 2)× 2 + 1 ≈ P to include sufficient contextual
information. In addition, zero padding is used within the
first two layers to retain the output dimensions, and group
normalization [66] with group size 32 are used between each
two consecutive convolutional layers.

Given the start and end boundary regression predictions
{rs,i}Ti=1 and {re,i}Ti=1, the initial action proposal (xs,i, xe,i)
with anchor size P are refined as

x̂s,i = xs,i + P ·
(
rs,xs,i+1 −

1

2

)
, (10)

x̂e,i = xe,i + P ·
(
re,xe,i+1 −

1

2

)
, (11)

where x̂s,i and x̂e,i are the refined start and end boundaries
for the i-th initial proposal. In this way, the initial boundaries
can be regressed to any temporal locations within its receptive
field.

The confidence scores of action proposals are set to the
negation of their coherence loss −Lc. To balance the positive
and negative predictions, only proposals with confidence scores
higher than 0.1 are kept. Denote the surviving action proposals
as {pi}

Np

i=1, where Np is the number of surviving proposals. The
total regression loss Lreg is defined as the average coherence
loss of the remaining proposals:

Lreg =
1

Np

Np∑
i=1

Lc(pi), (12)

where Lc(pi) denotes the coherence loss for proposal pi.
However, we empirically observe that some regression

networks tend to be “lazy”, and generate regression results
with low variance. This problem degrades the performance,
as the true action boundaries usually vary for proposals at
different locations. To address this problem, a regularization
term Lnorm to maximize the variance of the regression results
generated by each layer is introduced:

Lnorm =− 1

T

T∑
i=1

rsi − 1

T

T∑
j=1

rsj

2

− 1

T

T∑
i=1

rei − 1

T

T∑
j=1

rej

2

.

(13)
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Denote all anchor sizes as {Pi}Na
i=1, where Na is the number

of anchor sizes. The overall loss for the regression networks
is defined as:

L = Lreg + β
1

Na

Na∑
i=1

Lnorm(Pi), (14)

where Lnorm(Pi) denotes the regularization loss for the
regression results corresponding to the anchor size Pi, and
β is a trade-off hyper-parameter.

D. Single-Stream Inference

During testing, the authors only keep one action proposal
per snippet location which achieves the highest confidence
score among all action proposals covering this location of
different anchor sizes and discard all others. Subsequently,
Non-Maximum Suppression (NMS) is performed with an
overlap Intersection-over-Union (IoU) threshold 0.4, which
is empirically determined via cross-validation. Since a video
may contain action instances of more than one action category,
action localization is performed on all action categories whose
classification predictions are higher than a predefined threshold
0.1.

Note that the RGB stream and the flow stream are trained
separately. They are able to produce reliable modality-specific
temporal action localization results independently.

E. Two-Stream Fusion

After obtaining action proposals from both RGB and flow
streams, a filter fusion strategy is adopted to select and combine
them. Empirically, the flow stream typically provides more
accurate action proposals thanks to its sensitivity to even subtle
motions, which align well with the start and end boundaries
of action instances. In contrast, the RGB stream tends to
provide longer, coarser, and less accurate action proposals,
but corresponds better to scene transition locations. In addition,
the two streams also focus on different parts of the video, and
generate action proposals at different locations. Based on this
observation, the flow stream is used as the primary source and
the RGB stream is used as the auxiliary one. Let {pflow,i}Nflow

i=1

and {prgb,i}
Nrgb

i=1 denote the retained action proposals from the
flow and RGB steams, respectively, where Nflow and Nrgb

indicate the corresponding action proposal numbers.
The fusion module first retains all flow proposals

{pflow,i}Nflow
i=1 and at the same time discounts the confidence

scores of all RGB proposals by a factor of 21. Subsequently,
for each RGB proposal prgb,i, its IoU with all flow proposals
{pflow,i}Nflow

i=1 are calculated to obtain a retention score I(prgb,i)
with max-pooling:

I(prgb,i) = max({IoU(prgb,i, pflow,j)}Nflow
j=1 ). (15)

The reconciled proposals are the union of all flow proposals
{pflow,i}Nflow

i=1 and a set of RGB proposals {prgb,i|I(prgb,i) <

0.4}Nrgb

i=1 .

1To alleviate its overfitting tendency, the factor 2 is empirically determined
via cross validation on THUMOS14, and also works well on ActivityNet.
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Fig. 4. Box plots of the action instance duration in THUMOS14 [67] and
ActivityNet [49] datasets. On average, action instances in both release versions
of ActivityNet datasets are significantly longer than those in THUMOS14.
Specifically, the median action instance duration in THUMOS14 is 3.0 seconds,
while those in ActivityNet v1.2 and ActivityNet v1.3 are 28.5 seconds and
26.6 seconds, respectively.

To validate the superiority of the proposed action proposal
fusion module, two alternative fusion methods are also included
for comparison. Union fusion refers to directly combine the
action proposals from RGB and flow streams as the final results.
The early fusion used in AutoLoc [34] is also included: the
early fusion method directly feeds the concatenated RGB and
optical flow features to one sub-network and takes the output
as the final localization results.

IV. EXPERIMENTS AND DISCUSSIONS

In this section, the authors present the implementation details
of the proposed Action Coherence Network (ACN) and compare
it with the state-of-the-art temporal action localization (TAL)
methods on two benchmark datasets. Extensive ablation studies
are performed to validate the contribution of each component
of the ACN. Finally, the authors present discussions and future
work.

A. Dataset and Evaluation

Extensive experiments are conducted on two popular large-
scale benchmarks, i.e., THUMOS14 [67] and ActivityNet [49].
Note that only video-level action categorical labels are lever-
aged for training.

THUMOS14 dataset [67] contains 1, 010 validation and
1, 574 testing videos from 101 action categories. Among them,
only 200 validation videos and 213 testing videos within
20 categories have temporal annotations. The authors follow
previous methods to use the 200 validation videos to train our
model, and use the 213 testing videos to evaluate it. The video
length varies significantly from a few seconds to 26 minutes.
The duration of an action instance also has a large variance,
from shorter than one second to several minutes.

ActivityNet dataset [49] offers a larger benchmark for TAL
task. Two release versions of ActivityNet, i.e., ActivityNet v1.3
and ActivityNet v1.2 are leveraged for experiments. ActivityNet
v1.3 covers 200 action categories, with a training set of 10, 024
videos and a validation set of 4, 926 videos. ActivityNet v1.2 is
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a subset of ActivityNet v1.3, and it covers 100 action categories,
with 4, 819 and 2, 383 videos in the training and validation sets
respectively.2 The training set and the validation set are used
for training and testing, respectively. As shown in Figure 4,
the lengths of action instances in ActivityNet are generally
longer than those in THUMOS14, and the duration range of
ActivityNet is also larger than that of THUMOS14.

Evaluation metric. The authors follow the standard evalua-
tion protocol based on mean Average Precision (mAP) values
at different Intersection-over-Union (IoU) thresholds. The mAP
computes the average per-category Average Precision (AP),
which is defined as the area under the Precision-Recall (PR)
curve. A proposal is a true positive if its IoU with certain
unmatched ground truth is higher than a threshold, otherwise
it is a false positive. The recall is defined as the ratio of
true positive to ground truth, and the precision is the ratio
of true positive to all proposals. The PR curve is drawn by
connecting the recall and precision values for increasing set of
proposals in a confidence score descending order, starting with
the highest-scored proposal to all proposals [68]. The mAP
values are calculated by the evaluation codes provided by the
corresponding datasets.

B. Implementation Details

The proposed ACN is implemented in PyTorch [69]. The
optical flow is estimated with TV-L1 algorithm [70], and only
forward optical flow is computed. Two feature-extraction back-
bones are leveraged, namely UntrimmedNet [27] with a BNIn-
ception [71] backbone pre-trained on the ImageNet dataset [72],
and I3D [46] pre-trained on the Kinetics dataset [46] for
feature extraction, with a snippet length of 15 and 16 frames,
respectively. RGB and optical flow features are extracted as
1024-dimensional vectors at the global pool layer. The feature-
extraction backbones are not fine-tuned for fair comparison
with previous methods. For hyperparameter selection, we first
manually create a validation set by uniformly sampling 20%
videos from each class in the original training set, and then
conduct grid search on the newly generated validation set. The
regression network is trained with stochastic gradient descent
(SGD) optimizer for 8 epochs, an initial learning rate of 0.001,
and a decay factor of 10 for every 3 epochs. The normalization
term in Eq. (14) is only used for the THUMOS14 dataset
with β set to 2. The weight decay factor is set to 0.0005.
To alleviate the background noise, attention thresholding is
employed during testing. All snippets whose attention weights
are lower than a threshold are discarded. Specifically, the
attention threshold is fixed at 5 for the flow stream and 7 for
the RGB stream for UntrimmedNet features, and 0.3 for both
streams for I3D features. Following AutoLoc [34], the anchor
sizes P (the number of snippets) are set to 1, 2, 4, 8, 16, 32
for THUMOS14 and 16, 32, 64, 128, 256, 512 for ActivityNet.
If the length of a video is shorter than the minimal predefined
anchor length, the whole video is considered as an action

2In our experiments, there are 9, 937 and 4, 575 videos in the training and
validation sets of ActivityNet v1.3 respectively, and 4, 471 and 2, 211 videos
in the training and validation sets of ActivityNet v1.2 respectively. The other
videos are unaccessible from YouTube.

TABLE I
COMPARISON WITH STATE-OF-THE-ART TAL METHODS ON THE

THUMOS14 TESTING SET. “FULLY-SUPERVISED” MEANS THE TEMPORAL
ANNOTATIONS ARE USED DURING TRAINING, WHILE

“WEAKLY-SUPERVISED” MEANS ONLY VIDEO-LEVEL ACTION LABELS ARE
AVAILABLE DURING TRAINING. * INDICATES OUR REPRODUCED VERSION.
“BC” DENOTES THE BACKGROUND CLASSIFICATION PROPOSED IN [32].

Method mAP@IoU (%)
0.3 0.4 0.5 0.6 0.7

Fu
lly

-s
up

er
vi

se
d

Karaman et al. [73] 0.5 0.3 0.2 0.2 0.1
Richard and Gall [74] 30.0 23.2 15.2 - -

Yeung et al. [75] 36.0 26.4 17.1 - -
Yuan et al. [76] 33.6 26.1 18.8 - -
Yuan et al. [77] 36.5 27.8 17.8 - -

S-CNN [56] 36.3 28.7 19.0 - 5.3
SST [6] 37.8 - 23.0 - -
CDC [8] 40.1 29.4 23.3 13.1 7.9

Dai et al. [11] - 33.3 25.6 15.9 9.0
TURN TAP [12] 44.1 34.9 25.6 - -

R-C3D [9] 44.8 35.6 28.9 - -
Gao et al. [59] 50.1 41.3 31.0 19.1 9.9

SSN [7] 50.6 40.8 29.1 - -
BSN [17] 53.5 45.0 36.9 28.4 20.0

TAL-Net [16] 53.2 48.5 42.8 33.8 20.8

W
ea

kl
y-

su
pe

rv
is

ed

Hide-and-Seek [26] 19.5 12.7 6.8 - -
UntrimmedNet [27] 28.2 21.1 13.7 8.3 4.2
STPN (UNTF) [28] 31.1 23.5 16.2 9,8 5.1

W-TALC (UNTF) [30] 32.0 26.0 18.8 10.9 6.2
AutoLoc (UNTF) [34] 35.8 29.0 21.2 13.4 5.8
CMCS (UNTF) [31] 37.5 29.1 19.9 12.3 6.0

CleanNet (UNTF) [35] 37.0 30.9 23.9 13.9 7.1
ACN (UNTF) 37.0 31.1 24.9 15.7 7.5

STPN (I3DF) [28] 35.5 25.8 16.9 9.9 4.3
W-TALC (I3DF) [30] 40.1 31.1 22.8 14.5 7.6
AutoLoc (I3DF)* [34] 38.1 30.6 23.1 14.2 6.9

CMCS (I3DF) [31] 41.2 32.1 23.1 15.0 7.0
3C-Net (I3DF) [33] 40.9 32.3 24.6 - 7.7

ACN (I3DF) 40.7 34.7 26.4 16.8 8.0
ACN + BC [32] (I3DF) 43.4 36.3 27.3 17.6 8.7

proposal and its confidence score is equal to its classification
prediction score.

C. Comparison with State-of-the-arts

Experiments on THUMOS14. The results on the THU-
MOS14 testing set are summarized in Table I, where the
UntrimmedNet feature and I3D feature are denoted as UNTF
and I3DF, respectively. The proposed ACN outperforms all
competing W-TAL methods on the THUMOS14 testing set.
Among them, ACN with UNTF outperforms AutoLoc [34] by a
large margin at all IoU thresholds. Especially, ACN with UNTF
even achieves higher or comparable mAP with previous state-of-
the-art methods (e.g., STPN [28], W-TALC [30], AutoLoc [34]
and CMCS [31]) with I3DF at high IoU thresholds, which
demonstrates that the proposed coherence loss is able to detect
more precise action boundaries.

When equipped with I3DF, the proposed ACN achieves the
state-of-the-art performance compared with all competing W-
TAL methods, and is even comparable with some recent fully-
supervised methods (e.g., Dai et al. [11] and TURN TAP [12]).
Besides, adding the background classification [32] as an
auxiliary training objective improves the feature representation
ability, and further improves the overall performance.

Experiments on ActivityNet. Results on ActivityNet v1.2
and v1.3 validation sets are presented in Table II and Table III,
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TABLE II
COMPARISON WITH STATE-OF-THE-ART W-TAL METHODS ON THE ACTIVITYNET V1.2 VALIDATION SET. AVG DENOTES THE MEAN MAP AT IOU

THRESHOLDS 0.5:0.05:0.95. + INDICATES THE REPRODUCED VERSION OF AUTOLOC [34], AND * INDICATES OUR REPRODUCED VERSION.

Supervision Method mAP@IoU (%) Avg0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Weakly-supervised

UntrimmedNet+ [27] 7.4 6.1 5.2 4.5 3.9 3.2 2.5 1.8 1.2 0.7 3.6
AutoLoc (UNTF) [34] 27.3 24.9 22.5 19.9 17.5 15.1 13.0 10.0 6.8 3.3 16.0

ACN (UNTF) 30.4 27.2 24.3 20.5 18.0 15.4 13.2 10.3 7.5 3.7 17.0
W-TALC (I3DF) [30] 37.0 33.5 30.4 25.7 14.6 12.7 10.0 7.0 4.2 1.5 18.0
AutoLoc (I3DF)* [34] 31.9 29.3 26.0 22.9 20.0 17.0 13.6 9.7 5.0 1.4 17.7

ACN (I3DF) 36.0 31.6 28.0 24.2 21.1 17.9 14.8 11.3 7.0 3.5 19.6

TABLE III
COMPARISON WITH STATE-OF-THE-ART W-TAL METHODS ON THE ACTIVITYNET V1.3 VALIDATION SET. AVG DENOTES THE MEAN MAP AT IOU

THRESHOLDS 0.5:0.05:0.95. * INDICATES OUR REPRODUCED VERSION.

Supervision Method mAP@IoU (%) Avg0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Weakly-supervised

UntrimmedNet* [27] 7.0 6.1 5.3 4.4 4.0 3.3 2.6 2.1 1.5 0.7 3.7
AutoLoc (UNTF)* [34] 25.6 22.6 20.0 17.3 14.4 11.6 8.9 6.5 3.7 1.1 13.2

ACN (UNTF) 28.8 25.9 22.9 20.6 18.2 15.4 12.9 9.6 5.5 1.3 16.1
STPN (I3DF) [28] 29.3 - - - - 16.9 - - 2.6 -

W-TALC (I3DF)* [30] 33.4 30.7 28.4 26.2 21.8 11.6 4.6 2.1 0.8 0.2 16.0
AutoLoc (I3DF)* [34] 26.1 24.0 21.6 19.0 16.4 14.2 11.6 8.2 4.3 1.3 14.7

ACN (I3DF) 33.6 30.0 26.7 23.4 20.1 17.4 14.0 10.8 7.2 3.9 18.7

respectively. The proposed ACN outperforms all other methods
with the same backbone on the average mAP at IoU thresholds
0.5:0.05:0.95. Furthermore, the proposed ACN with UNTF
outperforms AutoLoc [34] at all IoU thresholds on two datasets.
Especially, on ActivityNet v1.3, ACN with UNTF even achieves
higher mAP than AutoLoc with I3DF at all IoU thresholds.

With I3DF, ACN further improves the performance. Although
W-TALC [30] achieves higher mAPs at low IoU thresholds,
the performance advantage of ACN becomes more significant
as IoU increases, which demonstrates that ACN can locate
more precise temporal boundaries and the results have larger
overlap with the ground truth. It also should be noted that the
performances of almost all the methods degrade on ActivityNet
v1.3 compared with ActivityNet v1.2. The reason might be
that the durations of action instances on ActivityNet v1.3 vary
more than those on ActivityNet v1.2 (see Figure 4). Particularly,
AutoLoc [34] with I3DF drops 3% on average, while ACN
with I3DF only drops 0.9% on average, which demonstrates
that ACN is able to generate more flexible action proposals.

To summarize, the proposed ACN outperforms all the
competing W-TAL methods on both the THUMOS14 and
ActivityNet datasets, and even compares favorably with some
fully-supervised TAL methods. This clearly demonstrates the
efficacy of the proposed ACN.

D. Ablation Study

To analyze the contribution of each component of our
proposed ACN to the overall performance boost, a set of
ablation studies are carried out on the THUMOS14 dataset
with UNTF.

Sensitivity Analysis on α. The α value in Eq. (9) is
an important trade-off hyper-parameter, which measures the
relative importance between SCPs and video representations in
the proposed coherence loss. Different α values are evaluated
during both training and evaluation phases. The results are
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Fig. 5. TAL performance comparison with different α values in Eq. (9) during
training and evaluation on the THUMOS14 dataset. Both streams achieve the
highest performances when α = 0.6.

measured with mAP at IoU threshold 0.5 and are illustrated
in Figure 5, which justifies our empirical choice of α = 0.6.

The performance is extremely low when α equals to 0. This
reveals that by only using the appearance term accounting for
the video content change while ignoring the classification score,
it is hard to distinguish the foreground from the background
because the background is equally possible to be classified
as action instances. When taking the classification score into
account, the performance boosts significantly even when α =
0.2. When α is set to 1, namely only OIC loss is used to train
and test our model, the flow stream achieves an mAP of 21.3%
at IoU threshould 0.5, which even outperforms the mAP of
21.2% by AutoLoc [34]. This verifies our assumption that the
RGB and optical flow modalities are complementary, and the
concatenation-based fusion methods such as AutoLoc [34] fail
to effectively utilize the two modalities.

Ablation Study on Action Proposal Scoring. As presented
in Section III-C, the negation of coherence loss Lc is used to
score action proposals. Two additional variants of the scoring
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TABLE IV
SINGLE-STREAM TAL PERFORMANCE WITH DIFFERENT TRAINING LOSSES AND SCORING METHODS ON THE THUMOS14 TESTING SET. THE LOSS

COLUMN MEANS THE NETWORK IS TRAINED WITH THE CORRESPONDING LOSSES, AND THE SCORE COLUMN MEANS THE PROPOSALS ARE SCORED WITH
THE CORRESPONDING METHODS.

Loss Score mAP@IoU (%)
0.3 0.4 0.5 0.6 0.7

La

−La 15.3 11.8 7.9 4.2 2.1
−LOIC 32.8 27.2 20.9 13.0 6.2
−Lc 33.9 28.0 21.6 14.0 7.3

LOIC

−La 18.3 13.9 9.8 5.4 2.3
−LOIC 33.8 27.6 21.3 13.8 6.6
−Lc 35.5 28.9 22.0 14.1 6.9

Lc

−La 17.3 13.5 9.6 5.4 2.3
−LOIC 33.7 27.8 22.3 15.3 7.2
−Lc 35.8 29.8 23.6 14.8 7.2

(a) Flow stream-only localization performance.

Loss Score mAP@IoU (%)
0.3 0.4 0.5 0.6 0.7

La

−La 13.6 9.5 5.8 2.6 0.9
−LOIC 23.7 17.5 11.3 5.8 2.1
−Lc 24.2 17.6 11.6 5.4 2.1

LOIC

−La 14.2 10.0 6.1 2.7 0.8
−LOIC 23.7 17.9 11.9 6.3 2.4
−Lc 25.0 18.6 12.4 6.2 2.2

Lc

−La 14.0 9.8 5.9 2.8 0.8
−LOIC 24.2 18.1 12.6 6.4 2.4
−Lc 25.3 19.2 13.0 6.7 2.3

(b) RGB stream-only localization performance.

TABLE V
TAL PERFORMANCE WITH DIFFERENT FUSION METHODS ON THE

THUMOS14 TESTING SET. ”DISCOUNT” MEANS THE CONFIDENCE SCORES
OF RGB PROPOSALS ARE DISCOUNTED BY A FACTOR OF 2.

Fusion Method mAP@IoU (%)
0.3 0.4 0.5 0.6 0.7

early fusion 37.0 29.3 22.4 14.3 6.2
union fusion 26.5 23.6 19.6 13.8 7.5

filter fusion w/o discount 36.1 30.3 24.3 15.1 7.2
filter fusion w/ discount 37.0 31.1 24.9 15.7 7.5
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Fig. 6. Per category TAL performance on the THUMOS14 dataset under
the IoU threshold 0.5. In all action categories except for Shotput, the flow
stream outperforms the RGB stream. And the fusion results further improve
the performance of most categories.

method are also included (for evaluation phase only), namely
the appearance term −La only and the OIC term −LOIC only.
The authors train the network with three different loss functions,
namely La, LOIC, and Lc. For each of these models, the authors
score the action proposals with three different scoring methods.

The flow stream and RGB stream TAL performances are
summarized in Table IV(a) and Table IV(b), respectively. First,
the performance advantage of −Lc as the scoring method for
all training losses verifies that the OIC term and the appearance
term are indispensable, and they jointly contribute to the
determination of the relative importance of action proposals.
Second, the performance of Lc is better than that of LOIC.
This verifies that the proposed coherence loss is able to regress

TABLE VI
PERFORMANCE COMPARISON BETWEEN MODELS TRAINED WITH AND

WITHOUT THE PROPOSED REGULARIZATION LOSS Lnorm . THE VARIANCE
COLUMN DENOTES THE AVERAGE VARIANCE OF REGRESSION RESULT FOR

DIFFERENT ANCHOR SIZES.

Lnorm Stream mAP@IoU (%) Variance0.3 0.4 0.5 0.6 0.7
- RGB 20.9 14.8 9.7 4.5 1.9 0.0173
X 25.3 19.2 13.0 6.7 2.3 0.0189
- flow 35.2 29.7 22.8 15.0 7.2 0.0156
X 35.8 29.8 23.6 14.8 7.2 0.0201

the action proposals to more precise action boundaries.
Ablation Study on the Regularization Loss. To help

the regression network generate flexible regression results, a
regularization term Lnorm is introduced as in Eq. (13). The
comparison results are listed in Table VI. The results reveal
that the regularization loss helps improve the localization
performance for both streams at all IoU thresholds. Besides,
the average testing variance of the regression results with the
regularization is also larger than that without the regulariza-
tion loss, demonstrating that the regularization loss helps to
generate more flexible regression predictions. The performance
improvement and the variance increase demonstrate the efficacy
of the regularization loss.

Ablation Study on Action Proposal Fusion. As discussed
in Section III-E, experiments to compare different fusion
methods are conducted. The results on the THUMOS14 dataset
are presented in Table V. The proposed filter fusion which
discounts scores of RGB proposals outperforms other methods.
Meanwhile, early fusion outperforms AutoLoc at all IoU
thresholds, which demonstrates the superiority of the proposed
coherence loss. However, its performance is even worse than
the performance of the flow stream under most of the IoU
thresholds, which means the concatenation-based two-modality
fusion may introduce some noise to the model and thus lead
to performance degradation.

Figure 6 compares the TAL performance on all action
categories, where the flow stream outperforms the RGB stream
on all categories except for Shotput. Moreover, the proposed
filter fusion further helps improve the performance on most
of the action categories. For example, on action Long Jump,
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Fig. 7. Per category Precision-Recall (PR) curve under the IoU threshold 0.3 on the THUMOS14 dataset. The x and y axes represent recall and precision,
respectively. The area enclosed by the PR curve and x and y axes is the Average Precision (AP).

the APs at IoU threshold 0.5 are 53.4% and 56.0% for RGB
stream and flow stream respectively, while the fusion result
on this category is 62.7%. On action Hammer Throw, the APs
at the IoU threshold 0.5 are 28.7% and 49.2% for the RGB
stream and the flow stream respectively, while the fusion result
achieves 55.4%.

Figure 7 presents the Precision-Recall (PR) curves for all
categories under the IoU threshold 0.3. Since the flow stream
is chosen as the primary source, the PR curves of the flow
stream and the fusion result are largely overlapped on most of
the categories. Meanwhile, the filter fusion result can achieve
higher recall (i.e., longer in the x axis) than the flow stream
because the retained RGB proposals contain some true action
instances that the flow stream fails to detect. The results also
show that the higher recall is the main factor of the performance
improvement, because it leads to a larger area enclosed by the
PR curve and the x and y axes, and thus a higher AP for each
category.

Qualitative Analysis. Several representative examples of
TAL results are plotted in Figure 8 to illustrate the efficacy
of the proposed ACN. For the Frisbee Catch example, the
flow stream and RGB stream both only detect a portion of
ground truth results, and thus all two stream proposals are
kept in the final fusion results. For the Billiards example, the

RGB and flow streams are also complementary, but the RGB
stream fails to separate two proximate action instances, and
these RGB proposals are discarded after fusion because of their
large overlap with the flow proposals. For the Throw Discus
example, both streams provide accurate action proposals, and
only flow proposals are retained in the final results under such
situation. For the Javelin Throw example, the RGB stream
fails to detect all true action instances, while the flow stream
produces precise action proposals. Although the final fusion
results nearly contain all action proposals from two streams,
the confidence score discount in the RGB stream helps to
alleviate the negative effect of fusing RGB proposals. For the
last example of Clean and Jerk, both streams cannot provide
accurate predictions, and they instead predict fragmentary and
low-quality action proposals. In this case, combining these
inaccurate predictions leads to even worse prediction results,
as the merged predictions will decrease the precision while
maintaining the recall.

E. Discussion and Future Work

The proposed coherence loss improves the performance
by involving the video content change in the scoring, whose
importance has also been verified in the co-activity similarity
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Fig. 8. Qualitative TAL results obtained by ACN on the THUMOS14 dataset. The horizontal axis in the plot is the timestamp. The five rows in each case are
1) input video frames, 2) ground truth of action instances, 3) action proposals from the flow stream, 4) action proposals from the RGB stream, and 5) final
fusion results, respectively.

loss in W-TALC [30]. Specifically, in our work and W-
TALC [30], the feature similarity is measured via cosine
similarity, the values of which will be very approximate for
high-dimensional (e.g., 1024-dimensional) features. Moreover,
if a video exhibits many scene transitions, the regressed action
boundaries tend to be those scene transition locations rather
than true action boundaries. This is because the SCPs and
features are more distinctive at these locations. Therefore,
future work may further exploit effective ways to model the
action coherence or similarity, or try to separate scenes in a
video before performing temporal action localization.

In addition, the flow stream with only an OIC loss achieves
comparable performance with AutoLoc [34]. This means the
RGB modality is largely ignored or even not used in the
concatenation-based fusion method. Therefore, another future
work may continue to focus on properly fusing the two

modalities.
Furthermore, the proposed ACN achieves higher performance

boost on THUMOS14 than on ActivityNet. The reason is
that under large anchor sizes, the dilation can be very large,
leading to a very sparse sampling (e.g., the dilation is 128 for
anchor size 512). This means the temporal information is not
effectively employed. However, on one hand, when increasing
the sampling rate, more parameters need to be added to the
network, and thus the overfitting problem will become more
severe; on the other hand, setting a higher β in Eq. (14) will
also lead to performance degradation. Future work may try to
solve this dilemma.

V. CONCLUSION

This paper proposes an Action Coherence Network (ACN)
for weakly-supervised temporal action localization, which
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benefits from a new coherence loss and a novel fusion module.
The coherence loss helps action proposals regress more precise
temporal locations, which have high classification activation
and clear appearance boundaries. The novel fusion module
is capable of reconciling modality-specific action proposals
generated by the RGB and flow streams. Experimental results
on the THUMOS14 and ActivityNet datasets demonstrate
the superiority of our ACN over previous states-of-the-art.
Extensive ablation studies are also conducted to validate our
design intuitions.
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