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Abstract. We present an efficient approach for action co-localization
in an untrimmed video by exploiting contextual and temporal feature
from multiple action proposals. Most existing action localization meth-
ods focus on each individual action instances without accounting for
the correlations among them. To exploit such correlations, we propose
the Graph-based Temporal Action Co-Localization (G-TACL) method,
which aggregates contextual features from multiple action proposals to
assist temporal localization. This aggregation procedure is achieved with
Graph Neural Networks with nodes initialized by the action proposal
representations. In addition, a multi-level consistency evaluator is pro-
posed to measure the similarity, which summarizes low-level temporal
coincidences, features vector dot products and high-level contextual fea-
tures similarities between any two proposals. Subsequently, these nodes
are iteratively updated with Gated Recurrent Unit (GRU) and the ob-
tained node features are used to regress the temporal boundaries of the
action proposals, and finally to localize the action instances. Experiments
on the THUMOS’14 and MEXaction2 datasets have demonstrated the
efficacy of our proposed method.

Keywords: Temporal action co-localization, multi-level consistency eval-
uator.

1 Introduction

The temporal action co-localization task aims to jointly locate the action in-
stances of the same category within an untrimmed video, which includes simul-
taneous action recognition (identify the category of each action instance) and
temporal localization (identify the temporal boundaries of each action instance).

Considerable progress has been made to address the temporal action lo-
calization problem in untrimmed videos [32, 5–7, 26, 38, 39, 4, 8, 20]. Techniques
including hand-crafted features (iDT) [32, 37], Convolution Neural Networks
(CNNs) [39, 20] and 3-dimensional Convolution Networks (3D ConvNets) [4, 24]
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Fig. 1. Flowchart of the proposed G-TACL method. The input is an untrimmed video,
which contains multiple action instances of the same category (e.g., CleanAndJerk,
marked with the red chunks at the bottom). There are a large number of background
frames (marked with the gray chunks) not containing such action instances. The out-
puts are the predicted categories and the temporal boundaries of action instances.

have been proposed and empirically demonstrated to be beneficial. However, the
correlation between multiple action proposals of the video in the same category
are usually neglected, which could otherwise be potentially beneficial due to
the appearance and structure consistency between proposals. Similar strategy
of exploiting the appearance and structural consistency of instances has been
demonstrated in image/video object co-segmentation [18, 31, 16]. Actually, it is
common that many videos contain multiple action instances of the same cat-
egory, such as triple jump videos or clean and jerk videos about the Olympic
Games. Therefore, a temporal action co-localization algorithm exploiting such
correlations could be reasonably desirable.

Graph Neural Networks (GNNs) have been widely adopted in many areas
including human-object interaction detection [21] and scene understanding [35].
The GNNs inherit the advantages of both CNNs and graphical models and have
strong capabilities of representing and learning the correlation among targets
[21]. Inspired by the success of GNNs, we devise the Graph-based Temporal
Action Co-Localization (G-TACL) algorithm which represents the correlations
using GNNs for co-localizing action instances.

Figure 1 illustrates the flowchart of our proposed action co-localization method.
We first employ the Two-Stream network [26] to extract snippet-level features.
And then a binary classifier is applied to compute the confidence score of whether
each video snippet belongs to the action or not. To generate high-quality action
proposals, a two-step thresholding strategy is utilized to group snippets accord-
ing to confidence scores. Finally, we leverage the G-TACL to model the corre-
lations among multiple action proposals and then iteratively update the action
proposal features. The nodes of the graph are initalizated by the representations
of action proposals, and we propose a multi-level consistency evaluator which
exploits high-level contextual similarity and low-level temporal coincidence be-
tween action proposals to construct the adjacency matrix. The node features are
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updated by GRU [3] and the updated features are employed to regress the tem-
poral boundaries of action proposals and to obtain the final action co-localization
result.

The primary contributions of this paper are summarized as follows. (1)
We propose G-TACL for video action co-localization, which takes advantage
of the correlation among multiple action proposals of the same category in an
untrimmed video. (2) We propose a multi-level consistancy evaluator for G-
TACL, which accounts for low-level temporal coincidences, features vector dot
products and high-level contextual features similarities.

2 Related Work

Action Recognition. Action recognition involves the classification of actions
in videos. Methods based on hand-crafted features [13, 30] and deep neural net-
works [11, 26, 29] have been studied extensively. Karpathy et al. [11] propose to
use CNNs for video classification. Simonyan et al. [26] propose the Two-stream
architecture where two structurally identical 2D ConvNets are used respectively
to proccess spatial and temporal information in videos. Tran et al. [29] propose
to extract temporal and spatial features from multiple frames simultaneously by
using 3D ConvNets.
Action Localization. Action localization mainly focuses on untrimmed videos
that containing at least one action instance and numerous background scenes [32,
37, 39, 25, 34, 17]. Wang et al. [32] combine manually crafted features represent-
ing motion and CNN features representing appearance for classification. To over-
come the drawbacks of hand-crafted features and capture motion characteristics,
Shou et al. [25] use multi-scale sliding windows and 3D ConvNet to determine
the action category and a localization network for the temporal boundaries of
action instances. Motivated by the original faster R-CNN [22], Xu et al. [34]
propose R-C3D where they switch from classical exhaustive sliding windows to
the 3D RoI Pooling that proposes temporal regions from a convolutional feature
map. Zhao et al. [39] propose the Structured Segment Networks (SSN) where
they introduce the structured temporal pyramid pooling to describe three ma-
jor stages of an action proposal, and apply a decomposed discriminative model
to jointly determine its category and completeness. Still, in the aforementioned
literatures, the correlation among action proposals of the same category are not
explicitly addressed as we speculate earlier.
Graph-based Network. Graph is a natural data structure to represent rela-
tionships among entities. GNNs extend the powerful learning potential of neural
networks to process graph data, and have recently become increasingly popular
in various domains [9, 14, 21, 28]. Li et al. [14] propose a situation recognition
method based on GNNs, which can capture joint dependencies between roles in
an image. Qi et al. [21] propose the Graph Parsing Neural Network (GPNN) to
infer human-object interactions in images and videos. Since action instances of
the same category are similar in context and appearance, we try to correlate and
update the representations of the action proposals using GNNs.
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Fig. 2. Pipeline of the proposed temporal action co-localization method. It consists of
three parts: feature extraction (upper-left), action proposal generation (upper-right)
and G-TACL (bottom).

3 Method

Let V denote an untrimmed video with T frames, V = {tm}Mm=1, where tm is the

m-th frame. V contains a set of action instances G = {gn = (ts,n, te,n, kn)}Ng

n=1,
where Ng is the number of action instances, ts,n, te,n, and kn are the starting,
ending frame and the action category of the n-th instance gn, respectively. Our
goal is to identify the action in video V and to predict the temporal bound-
aries and the category of each action instance. We adopt a two-stage framework,
proposal-and-classification, i.e., we first generate action proposals, and then pro-
cess them using G-TACL to obtain the final action co-localization result. Figure
2 presents the pipeline of our proposed temporal action co-localization method.

3.1 Snippet-level feature embedding

The goal of this step is to obtain the video representation. The original video
is first split into multiple non-overlapping, fixed-length snippets. A pre-trained
Two-stream networks [26] is applied to embed each snippet into a fixed-length
feature vector1.

For each snippet, we randomly sample one RGB frame and five consecutive
optical flow images and feed them to the spatial stream and the temporal stream
respectively, each producing in a 1024-dimensional feature vector. The snippet-
level feature is obtained by concating the spatial and the temporal features.
Specifically, given a video V = {si}Si=1 with S snippets, where si denotes the
i-th snippet, the snippet-level feature embedding can be formulated as

Fi = [Frgb(si),Fflow(si)], (1)

1 Note that our method is not restricted to any specific feature extractor.
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where Frgb and Fflow denote temporal and spatial stream, respectively. To sum
up, the output of this step is the feature map F ∈ RS×2048.

3.2 Action proposals generation

Unlike conventional sliding windows-based proposal generation, we exploit the
output scores of an “actionness” [33] binary classifier and design a dual threshold
scheme. As illustrated in the upper right part of Figure 2, this class-agnostic
binary classifier estimates the actionness scores of input snippets. As noted in
[39], there are many noisy frames in the untrimmed videos. Empirically, we design
a dual threshold scheme, with separate action-starts threshold α and action-ends
threshold β (typically β < α). A new action proposal is obtained once its the
actionness score spikes above α and until its actionness score falls below β. With
different choices of α and β, a set of L proposals P = {Pl}Ll=1 can be obtained.
In our experimental settings, α ∈ {0.5, 0.6, 0.7, 0.8} and β ∈ {α − 0.2, α − 0.1}
accordingly, therefore a total of 8 threshold combinations are explored.

3.3 G-TACL

With action proposals of the same action category, we can theoretically expect
higher contextual correlations among them than those across different action
categories. In addition, we expect that the quality of these action proposals also
affect the contextual correlations. Specifically, we speculate that the correlations
among high-quality action proposals of the same category should be higher than
those among their low-quality counterparts. To leverage such information, we
formulate such contextual correlations and information transfer/interaction with
the GNNs and the iterative GRU [3] updates, respectively.
Defining graph nodes. In the training phase, only the proposals that sat-
isfy one of the following two conditions are used as nodes: (1) Its IoU with
ground-truth is greater than 0.5; (2) It has the largest IoU of all proposals with
ground-truth. We denote the set of nodes as X = {Xj}Nj=1, where Xj is the
j-th node. Xj = (ts,j , te,j , kj , FXj ), where ts,j , te,j , kj , and FXj denote the
starting, ending frame, action category and the feature representation of the
corresponding proposal, respectively. FXj

is obtained by concating the features
of three parts:

FXj = [F sXj
, F cXj

, F eXj
], (2)

where F sXj
, F cXj

, and F eXj
denote the average of three snippets features before

the proposal, the average of all snippets features covered by the proposal and the
average of three snippets features after the proposal (i.e. the starting, course,
and ending stage of a proposal), respectively.
Computing adjacency matrix. We use three kinds of relations to construct
the consistency evaluator, noted as A1, A2, and A3 below, which represent low-
level temporal coincidences, features vector dot products and high-level contex-
tual similarities, respectively. First, if two nodes, Xp and Xq, have a high overlap
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in the time domain, then the proximity between them should be high. We cal-
culate the overlap of temporal region between proposals (noted as O(Xp, Xq))
to obtain A1(p, q). Second, the similarity between vectors can be represented by
their dot product. We calculate the dot product between FXp and FXq to ob-
tain A2(p, q). Third, we adopt a simple multi-layer perception model with one
hidden layer to capture the contextual correlation between nodes. Specifically,
we concat the features of two nodes and use two 1-dimensional convolution layer
with kernel size of 3 to obtain the degree of contextual correlation A3(p, q) of
these two nodes. The final adjacency matrix is the weighted sum of A1, A2, and
A3. It can be formulated as

A1(p, q) = O(Xp, Xq) =
(ts,p, te,p) ∩ (ts,q, te,q)

(ts,p, te,p) ∪ (ts,q, te,q)

A2(p, q) = FXp
· FXq

A3(p, q) = Fs([FXp
, FXq

])

A(p, q) = w1 ·A1 + w2 ·A2 + w3 ·A3

, (3)

where Fs denotes the two 1-dimensional convolution layer and w1, w2, w3 are
constants to control the trade-off of those three terms (detailed in Section 4.3).
The value in the adjacency matrix is the similarity between action proposals.
Updating node features. Our goal is to update the node features based on
all other nodes in the graph and its own state during message propagation. We
first aggregate features of all similar nodes with the message function, and then
use the update function to update the node features. The message function is
defined as

mp =
∑
q

A(p, q) · FXq . (4)

We use GRU [3] as the update function to update the node features. At each
iteration η (η = 1, . . . ,H), the update function is formulated as{

oηp, h
η
p = GRU(hη−1

p , mη
p)

F ηXp
= oηp

, (5)

where mη
p denotes the aggregated features of node p at η-th iteration. We update

FXp
with the hidden state of the GRU.

Regression, classification and scoring. We use the updated node features
to classify the actions of the nodes and regress the temporal boundaries ts and
te, so that the regressed temporal region is better aligned with the target action
instance. Since each action instance will generate multiple proposals, we need to
compute the confidence score of each node to retrieve the results.

Specifically, for a node Xp, its temporal boundaries is ts,p and te,p, and
the corresponding temporal center location and duration are l = (ts,p + te,p)/2
and d = te,p − ts,p, respectively. We obtain the regression results by feeding
the updated features into a stacked 1-dimensional convolution network with a
hidden layer. The output consists of two elements ∆l and ∆d, which representing
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the predicted center location and length offset, respectively.The regressed center
location, duration and new boundaries (localization result) can be calculated by

l′ = l + d ·∆l, d′ = d · e∆d,
t′s,p = l′ − d′/2, t′e,p = l′ + d′/2.

(6)

The regressed proposals are then classified and scored based on the features of
the regressed temporal location. We use a fully connected layer for classification
and and a stacked two 1-dimensional convolution layer for scoring. During the
training phase, we fix the parameters of the feature embedding module and only
learn the parameters of G-TACL. We calculate the regression loss and the scoring
loss (Smooth L1) based on the temporal boundaries after the regression, and use
the classification result to calculate the classification loss (Cross Entropy).

4 Experiments

4.1 Datasets and evaluation metrics

We conduct extensive experiments on two benchmark datasets to evaluate the
proposed method, including THUMOS’14 [10] and MEXaction2 [1].

THUMOS’14 dataset is challenging and widely used in temporal action lo-
calization task, which includes 20 action categories with temporal annotations.
The validation set and test set contain 1, 010 and 1, 574 untrimmed videos, re-
spectively. Each video contains multiple action instances. We only use 200 videos
in validation set and 212 videos in test set in which temporal annotations are
provided. We use the validation set for training and the test set for evaluation.

MEXaction2 dataset contains two action categories, i.e., “Bull Charge Cape”
and “Horse Riding”. It is consisted of YouTube clips, UCF101 Horse Riding clips
(these clips are trimmed videos), and untrimmed INA videos. We just use the
INA subset of untrimmed videos in our experiments, which contains 38 training
and 32 test videos of 2 categories. The average duration of INA videos is 39
minutes, of which less than 3% are action instances. We train the G-TACL with
the training set and test it with the test set.

The mean average precision (mAP) with respect to different IoUs is used as
evaluation metric, which is the conventional metric used in temporal action lo-
calization task. A prediction is considered correct if and only if the category label
is correct and the temporal IoU with ground-truth exceeds the IoU threshold.
Multiple mAP values under different IoU thresholds are reported.

4.2 Implementation details

We implement the model and the evaluation pipeline using PyTorch. We re-
fer the feature embedding module as SSN [39], and use the Inception-V3 [27]
network pre-trained on Kinetics dataset[12] as the network backbone, with the
last classification layer removed. We optimise the parameters of G-TACL in an
end-to-end manner in 35 epochs using stochastic gradient descent (SGD), with
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an initial learning rate of 0.0001 annealed by 0.1 after epoch 15 and again at
epoch 25, and a momentum fixed at 0.9. Empirically, the number of node fea-
tures updates as little effect on the experimental results, therefore it is fixed at
1 (H = 1) for computational efficiency in our experiments.

4.3 Ablation study

Evaluation of the G-TACL. To validate the efficacy of the proposed G-TACL,
we compare it with a baseline aggregation strategy, specifically, G-TACL with-
out node feature update, on THUMOS14 dataset. The result is summarised in
Table 1, where “Baseline” denotes no feature update and “G-TACL” denotes
our proposed method. The results showed that our proposed G-TACL can sig-
nificantly improve the performance of temporal action co-localization at all the
IoU thresholds.
Comparison with different consistency evaluators. We speculate that the
three components of the consistency evaluator might not contribute equally on
node feature update, and assess each of them by setting the weights of the others
to 0. The results in Table 2 showed that every single component can boost the
performance, and thus verified our speculation. We empirically tune the weights
and find a ratio of w1 : w2 : w3 = 2 : 1 : 2 yields reasonable performance.
The effect of the number of iterations. Our proposed G-TACL can itera-
tively update node features as detailed in Section 3.3. Table 3 presents the effect
of the number of iterations. It can be seen that the number of iterations has little
effect on performance. As more iterations will affect the computation efficiency,
we set H = 1 in our experiments.

Table 1. Ablation study on node feature
update. G-TACL outperforms G-TACL
without node feature update at multiple
IoU thresholds on THUMOS’14 dataset.

IoU 0.3 0.4 0.5 0.6 0.7

Baseline 38.7 32.1 27.5 19.6 11.9
G-TACL 49.4 39.5 31.1 22.0 14.7

Table 2. Ablation study on consistency
evaluator (IoU = 0.5). All the three parts
in consistency evaluator are compatible and
each single part can boost the performance.

w1 : w2 : w3 mAP

0 : 0 : 0 27.5
1 : 0 : 0 29.7
0 : 1 : 0 29.1
0 : 0 : 1 30.1
2 : 1 : 2 31.1

Table 3. Exploration of the G-TACL with different number of iterations at multiple
IoU thresholds on THUMOS’14 dataset.

IoU threshold 0.3 0.4 0.5 0.6 0.7

H=1 49.4 39.5 31.1 22.0 14.7
H=2 49.8 39.6 30.6 21.5 13.8
H=3 49.4 39.7 30.8 21.7 13.9
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4.4 Comparison with state-of-the-art methods

We compare our method with a variety of recently proposed temporal action lo-
calization methods on THUMOS’14 dataset. As shown in Table 4, our method is
comparable to other recent methods when IoU threshold < 0.5 and outperforms
them when IoU ≥ 0.5. This validated that our proposed G-TACL can gener-
ate more accurate temporal boundaries and have better performance. Figure 3
visualizes the localization results of two action categories from the THUMOS’14.

Also, we compare our method with three existing methods on MEXaction2
dataset. As same as the compared methods, we summarise the mAP@IoU=0.5
of each category in Talel 5, our proposed method achieves the best performance.

In this paper, we propose the G-TACL to model the contextual correlation
between action proposals and update the features of nodes. We compute the
AP of each category on the THUMOS’14 dataset and compare them with three
existing method in Figure 4. The results showed that our method obviously
outperforms the others in more than half of the categories. In the process of
information transfer, not only will the feature be enhanced, but also the feature
may be weakened, so that our results on all categories are relatively average,
unlike other results are particularly good or particularly poor.

Table 4. Comparison with the state-of-the-art temporal action localization methods
on the THUMOS’14 test set. G-TACL yields comparable results when IoU threshold
< 0.5, and significantly outperforms other methods when IoU threshold ≥ 0.5.

IoU threshold 0.3 0.4 0.5 0.6 0.7

Oneata et al. [19] 28.8 21.8 15.0 8.5 3.2
Richard et al. [23] 30.0 23.2 15.2 − −

Yuan et al. [38] 36.5 27.8 17.8 − −
Shou et al. [25] 36.3 28.7 19.0 − −
Duan et al. [4] 39.8 27.2 20.7 − −
Shou et al. [24] 40.1 29.4 23.3 13.1 7.9
Xu et al.. [34] 44.7 35.6 28.9 − −
Lin et al. [15] 43.0 35.0 24.6 − −
Buch et al. [2] 45.7 − 29.2 − 9.6
Zhao et al.[39] 51.9 41.0 29.8 19.6 10.7
Yang et al. [36] 44.1 37.1 28.2 20.6 12.7

G-TACL 49.4 39.5 31.1 22.0 14.7

Table 5. Comparisons with three existing methods on the MEXaction2 test set (IoU
= 0.5).

Category BullCHargeCape HorseRiding mAP

MEXaction2 [1] 0.3 3.1 1.7
Shou et al. [25] 11.6 3.1 7.4
Lin et al. [15] 16.5 5.5 11.0

G-TACL 10.0 13.8 11.9
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(a) An example of HummerThrow

Video Frames

Ground-truth

Prediction
7.3 10.9 15.7 20.9 21.7 35.3 50.7 52.9 58.4 72.0 134.0 140.5

6.7 12.5 16.0 35.1 50.7 53.2 62.7 71.2 134.7 140.9

(b) An example of HighJump

Fig. 3. Qualitative examples of the proposed G-TACL on THUMOS’14 test set. The
ground-truth temporal locations, predictions and backgrounds are illustrated by red,
green and blue bars, respectively.
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Fig. 4. The AP of each action category on THUMOS’14 test set (IoU = 0.5).

5 Conclusion

In this paper, we propose a graph-based network (G-TACL) for temporal action
co-localization in an untrimmed video. In contrast to previous methods, G-TACL
can update node by aggregating similar contextual features, which is beneficial
for precise temporal boundaries regression. In addition, we propose the multi-
level consistency evaluator as an indicator of the similarity between proposals to
calculate the adjacency matrix. Experiments on two datasets have verified the
efficacy of our proposed method.
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