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Abstract— Cognitive ability evaluation in intelligent vehicles
is conventionally evaluated by classical autonomous driving
dataset, which lacks comprehensive annotations of driving
difficulty. Realistically, different driving conditions require vast
different level of cognitive ability, e.g., driving in highly con-
gested traffic is much more challenging than driving on limited
access highway; driving in a blizzard/hurricane requires much
more robust environmental cognition abilities than driving
under ordinary conditions. Different datasets contain different
proportions of various driving conditions, rendering intelligent
vehicle evaluation susceptible to dataset variations. To overcome
such limitations, we propose to first benchmark the driving
difficulty with the proposed “Cascaded Tanks Model” and
obtain a fine-grained per-segment difficulty rating based on
our proposed Semantic Descriptor. With the proposed Graded
Offline Evaluation (GOE) framework, it is demonstrated that
offline validation of the cognitive abilities in Intelligent Vehicles
(IV) is more consistent regardless of dataset choice.

I. INTRODUCTION

Cognitive abilities are the fundamentals of autonomous
driving systems. Given some multi-source heterogeneous
sensor data, intelligent vehicles are expected to answer the
questions such as “What are the current traffic conditions
like? Where are other vehicles and pedestrians?” The need
of testing and validating the cognitive module (e.g., envi-
ronmental recognition algorithms of the advanced driving
assistant systems (ADAS) and the autonomous driving sys-
tems) has never been so urgent in the new era of wide
applications of artificial intelligence in IV. To minimize
potential safety risk, it is essential to assess how well a
cognitive module works during its development procedure
and before it is deployed on commercial systems. To achieve
this goal, offline evaluation techniques and schemes [16] are
widely utilized in the life cycle of such developments of
cognitive modules.

For a typical task in an offline test, there are primarily
two design problems. The first one is how to prepare the
test data [10], [24]; and the other one is how to evaluate
the intelligent vehicle’s performance given the outputs from
such vehicle. From 2012, various benchmarks [4], [14] on
cognitive algorithms from different datasets [6], [7], [11]
have been proposed. They provide numerous heterogeneous
multi-modal time-synchronized sensory data acquired from
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Fig. 1. F1 scores of two intelligent vehicle contest participators A (shown
in blue) and B (shown in orange), in the proposed Graded offline Evaluation
(GOE) framework, with individual scores for roadway segments with three
scenario complexities. 60%, 35% and 5% of the roadway segments are rated
as simple, medium, and complex, respectively.

the real traffic scenarios with video cameras, laser scanners
(especially LiDAR for remote sensing applications [1], [17],
[18]) and GPS localization systems. Besides, they provide
baseline benchmarks on cognitive tasks, such as 2D/3D
object detection, object tracking, lane detection.

However, existing benchmark dataset often ignores the
correlation between the cognitive performance and the in-
trinsic complexity of the driving scenarios in the sensory
data. For example, driving in highly congested traffic is much
more challenging than driving on limited access highway;
driving in a blizzard/hurricane requires much more robust
autonomous driving system than driving under ordinary
conditions. The sensory data included in different datasets
contains different proportions of various driving conditions,
but in their evaluation methods, autonomous driving systems
are evaluated merely by a collection of overall quantitative
indexes such as Precision, Recall and F1-Measure without
proper indication of the intrinsic difficulty.

For instance, given two intelligent vehicles (denoted as
participators A and B in Fig. 1 and their overall F1 scores
(0.821 and 0.822, respectively) in the same cognitive func-
tionality offline test, it is not immediately obvious which
participator is comparably better. However, if a graded test
results as well as the distribution of scenario complexity are
obtained (both the blue and orange histograms in Fig. 1),
it can be found out that the participator A achieves better
performance on sensory data from simple scenarios while the
participator B performs better in the more complex scenarios.

In this paper, we propose an efficient Graded Offline
Evaluation (GOE) framework (Fig. 2) to assess the cognitive



Fig. 2. The proposed Graded Offline Evaluation (GOE) framework for IV Cognition. As demonstrated on the bottom left, sensory data are quantified by
the proposed Semantic Descriptor and classified into 3 levels of scenario complexity. With the graded and annotated offline testing data and the predefined
cognition tasks (shown on the top left), the cognition abilities are evaluated with the Cascaded Tanks Model (shown on the right), with Level 1, 2 and 3
tests containing data rated as simple, medium and complex, respectively. The obtained results can be analyzed statistically or visualized for easier human
interpretation.

abilities of IV, by exploiting the dependence of cognitive
ability level on fine-grained per-segment scenario complex-
ity. Firstly, sensory data for offline test are described quanti-
tatively by the proposed Semantic Descriptor. Secondly, with
the pre-defined three levels (simple, medium and complex) of
scenario complexity, the previously annotated offline testing
data are graded into three classes by a Support-Vector
Machine (SVM) [3] multi-class classifier. To evaluate the
graded test results efficiently, we incorporate the Cascaded
Tanks Model to assess different IV with a list of cognition
tasks (e.g., traffic lane detection, front vehicle and pedestrian
detection and traffic signal detection). In this Cascaded Tanks
Model, roadway segments with scenario complexity levels
simple, medium and complex are included in the Level 1,
Level 2 and Level 3, respectively. A detailed case study
is conducted on two sample autonomous driving platforms
to validate the efficacy of the proposed GOE assessment
framework. The major contributions of this paper are as
follows.

1) A quantitative Semantic Descriptor is proposed to
summarize realistic driving difficulties.

2) An SVM-based data gradation system is proposed to
automatically predict per-segment roadway scenario
complexity ratings.

3) Based on scenario complexity ratings, the Cascaded
Tanks Model is incorporated in the proposed GOE
framework, offering efficient and interpretable assess-

ments for IV cognition.

II. PROPOSED GOE FRAMEWORK FOR IV COGNITION

Multiple testing frameworks [22], [23] have been proposed
in recent years for the development and study on autonomous
driving algorithms, functionalities and systems. Although the
cognition ability have been recognized as an essential module
in advanced driving assistant systems (ADAS) and self-
driving cars [9], the existing test and evaluation frameworks
are essentially identical to general purpose testing system
for generic algorithms, which are susceptible to dataset
variations.

As illustrated in Fig. 2, the GOE framework is proposed in
this paper to offer efficient, consistent and easily interpretable
evaluation of IV cognition. This GOE framework consists of
the multi-sensor data gradation with the semantic descriptor,
the cognition task list, the Cascaded Tanks Model based
offline evaluation and results analysis and visualization.

A. Semantic Descriptor

Classical autonomous driving datasets, like KITTI [6],
[7], RobotCar [11] categorize implicitly semantic contents of
scenarios with coarse labels, i.e., labels are assigned to entire
set of scenario data without precise locations. For instance,
KITTI divides all scenarios into five scene types, “Road”,
“City”, “Residential”, “Campus” and “Person”. Such anno-
tations have overlaps and are ambiguous when only a small



portion of images in a given set contain the scenes. On the
contrary, annotations in the RobotCar dataset consists of an
incomplete set of weather conditions and road users, such
as “pedestrian”, “bicycle” and “vehicle traffic”, “light rain”,
“heavy rain”, “direct sunlight”, etc. Such annotations could
not cover the full set of all possible weather scenarios and
road users, thus it is not directly applicable for the gradation
of scenario data.

In this paper, we propose the Semantic Descriptor v to
encode the scenario data with perceptive data annotations
from three different perspectives: road type, scenario content
and challenging conditions.

1) Road Type (RT ). Road types reflect the fundamental
layout of a traffic scenario. The characteristics and
quantities of challenging conditions also vary accord-
ing to specific road types, too. For instance, road
intersections and pedestrians are more prevalent in the
“Urban” category; while in the “Highway” class, vehi-
cles might need to drive across an overpass or pass toll
booths. We use an n-dimension binary-valued vector
vRT with one-hot encoding to describe the road type
information per roadway segment. The n road types
are defined to cover all types present in a dataset, such
as “Urban”, “Highway”, “Country”. Unlike previous
road type encodings, the proposed method assigns dif-
ferent vRT values per roadway segments, where each
segment contain only one category of Road Type and
Scenario Content to eliminate ambiguity. Specifically,
vRT will have a single 1 bit and all the others are 0
bits, due to the one-hot encoding.

2) Scenario Content (SC). Scenario content reflects
the semantic content of the corresponding roadway
segment. We use an m-dimension binary-valued vector
vsc with one-hot encoding to describe such scenarios.
The m scenario types cover nearly all the possible sce-
nario contents encountered by an IV, including “Nor-
mal Driving”, “Intersections”, “Elevated Road”, “Toll-
booth”, “Tunnel”, “Roundabout”, “Slope”, “Bridge”,
“Railway” and etc. Due to the fine-grained per-segment
labeling, different scenario content labels are mutually
exclusive, i.e., vsc will have a single 1 bit and all the
others are 0 bits.

3) Challenging Conditions (CC). Challenging condi-
tions vcc are defined to reflect the per-segment driving
difficulty due to a predefined o types of challenges. vcc

is an o-dimensional floating-point vector with values
between 0 and 1, where 0 represents no challenge
at all and 1 represents the most challenging condi-
tions possible. The o types of CC are generalized
from almost all possible challenges an IV might en-
counter, including “Curve”, “Overtaking”, “Pedestri-
ans”, “Road Construction”, “Heavy Traffic”, “Fog &
Haze”, “Night”, “Marked Road”, “Fuzzy Markers” and
“Special Illumination”.

After obtaining the individual components, the Semantic
Descriptor v is obtained by concatenating them, v =

[
vT
RT ,v

T
sc,v

T
cc

]T
. The obtained v serves as the basis for

the subsequent data gradation without relying on other com-
putationally expensive computer vision-based recognition
algorithms (e.g., [8], [12], [13], [15]).

B. Data Gradation

Data gradation is a critical component for the proposed
GOE framework. To thoroughly test IV cognition under
different difficulties, it requires massive amount of annotated
scenario data. Therefore, manual labeling of all scenario
data in the format of the proposed v is prohibitively time-
consuming. Instead, a data-driven gradation method is pro-
posed to classify the scenario data automatically. First, the
gradation is recast into a supervised multi-class classification
problem, which can be solved via a combination of binary
SVM classifiers [3]. In the proposed GOE framework, we
utilize the Error-Correcting Output Codes [5] to code this
combination and decode the predicted output for classifica-
tion. The coding strategy is the one-versus-all [2], where
each class is discriminated against the rest of classes. Given
a set of quantitative descriptions {v} of segmented scenario
data and the predefined 3 levels of scenario complexity
Cp ∈ {1, 2, 3}, the prediction is carried out by

Cp(v) = arg max
i=1,2,3

fi(v), (1)

where fi is the output score of the ith-vs-rest SVM classifier.
The training procedure of such 3-class classifier is divided

into two steps. Firstly, we manually annotate a small amount
(approximately 1000) of scenario data segments as Simple
(1), Medium (2) and Complex (3), according to their RT , SC
and the quantity/difficulty of CC. Afterwards, the relation-
ship between Semantic Descriptors v and manually labeled
complexity Cp are learned by the classifier. The average
training time is 1.18 second per 100 samples on an Intel
Core i5 7200U laptop, and the accuracy of the predicted
complexity on the training set is 93.23%.

C. Cascaded Tanks Model

According to empirical experiences, higher scenario com-
plexity often leads to lower cognition performance. Based
on this observation, we proposed the “Cascaded Tanks”
evaluation model as illustrated in Fig. 3, with stepwise
increasingly challenging IV cognition test. In this Cascaded
Tanks model, IV cognition are evaluated with scenario data
rated as simple, medium and complex at Level 1, 2 and 3,
respectively. At each level, overall quantitative indexes such
as precision, recall and F1 scores are calculated based on the
average of per-frame performance. At the ith level for the
jth cognition task (j = 1, · · · , N ),

Precisioni(j) =
TPi(j)

TPi(j) + FPi(j)
, i = 1, 2, 3. (2)

Recalli(j) =
TPi(j)

TPi(j) + FNi(j)
, i = 1, 2, 3. (3)

F1,i(j) =
2Precisioni(j)× Recalli(j)
Precisioni(j) + Recalli(j)

, i = 1, 2, 3. (4)



Fig. 3. Proposed Cascaded Tanks Model. Level 1, 2 and 3 evaluations
are visualized in red, yellow and blue color, respectively. The s = 0.90 is
denoted by threshold indicators, and the per-level all-task average score Si

is visualized by the “water level” in the respective “tanks”. The PASS and
FAIL outputs of Ci in Eq. (6) is represented the solid and dash borders of
square “tanks”, respectively.

TPi, FPi and FNi represent the True Positive, False Posi-
tive and False Negative at the i-th level. A per-level all-task
average score Si is obtained by

Si =

N∑
j=1

wjF1,i(j), (5)

where wj , j = 1, · · · , N denotes the predefined reference
weights. Additionally, let s ∈ [0, 1] denote a given global
threshold, and an indicator function Ci(Si, s) for the ith level
(i = 1, 2, 3) is constructed to provide easily interpretable
results as

Ci(Si, s) =

{
PASS if Si ≥ s

FAIL otherwise
. (6)

As in Fig. 3, the proposed cascaded tank model offers
intuitive visualization and easy interpretation. Level 1, 2 and
3 evaluations are visualized in red, yellow and blue color,
respectively. The s = 0.90 is denoted by threshold indicators,
and the per-level all-task average score Si is visualized by
the “water level” in the respective “tanks”. The PASS and
FAIL outputs of Ci in Eq. (6) is represented the solid and
dash borders of square “tanks”, respectively.

III. CASE STUDY: IV COGNITION EVALUATION AT IVPC
In November 2017 at the Intelligent Vehicles Proving

Center of China (iPVC), Changshu, China, the proposed
GOE framework was applied in an invited offline cognition
test on two autonomous driving platforms A and B (both
anonymized), with the following tasks.

1) Lane Detection. Lane marking localization and corre-
sponding line type classification based on video inputs.

2) Front Vehicle-and-Pedestrian (V&P) detection based
on synchronized point cloud-image sequences.

3) Traffic Sign and Signal detection based on video
inputs. All signs and signals are compliant with the
national standards GB5768-2009 and GB14886-2006.

TABLE I
STATISTICS OF THE CHOSEN SEGMENTS UTILIZED IN THE CASE STUDY.

Tasks Simple Medium Complex Total

Lane Detection 18 19 7 44
V&P Detection 19 7 3 29
S&S Detection 5 14 13 32

Data Acquisition and Selection. To ensure the objectiveness
and effectiveness of the conducted test, instead of utiliz-
ing the existing traffic dataset (e.g., KITTI, RobotCar), we
collected the wide-angle image sequences in conjunction
with point cloud data from the autonomous driving platform
shown in Fig. 2. The equipped Velodyne LiDAR and Point-
Grey camera was pre-calibrated following [7]. As commonly
assumed in [19], [20] [21], multi-sensory data offers more
discriminative information thus both video sequence and
LiDAR point cloud are recorded while driving in the city
of Changshu and on nearby highways, in regular daytime,
rush hours and at night. Post-processing was conducted to
ensure the time synchronization between video frames and
point cloud frames.

As the raw dataset was of approximately 18TB in size,
appropriate subsets need to be selected. Based on the
proposed Challenging Conditions, we manually chose 105
segments of scenario data, each of which contain 80-200
video and point clouds frames, as summarized in Table I. For
example, 44 segments were selected for the lane detection
task with varying difficulty ratings, including curvy roads,
roads with fuzzy markings, roads under strong illumination,
roads in the night. All the selected data is encoded by the
proposed Semantic Descriptor and subsequently graded by
the classifier presented in Section II-B. The distribution of
the obtained scenario difficulty grades are summarized in
Table I.
Lane Detecting Evaluation. We jointly evaluated lane mark-
ing detection and line type classification with the benchmark
dataset, which comprises 6464 annotated lane markings with
a total length of 91229.51 meters. With a given image frame,
an algorithm is required to localize and classify all visible
markings 10 ∼ 50 meters ahead. Algorithm outputs with
distance to the ground truth of less than 40 cm are accepted
as True Positives (TP).

As illustrated in Fig. 4, Platform A outperformed B on the
simple scenario data with the score of 0.93, which earned
it a “Level 1 PASSED” rating. On the contrary, limited to
detecting only the ego-lane, Platform B failed in the all levels
of evaluations. Besides, both platforms suffered dramatic
performance degradations under low-light conditions (night
driving scenarios).
Front V&P Detection Evaluation. The task of front vehicle
and pedestrian detection provides time-synchronized RGB
image-point cloud sequences and calibrated parameters of
LiDAR-to-camera, therefore, a high degree of freedom is
offered. A candidate platform could fuse data from both
modalities or select relevant data from one modality.

Unlike general purpose object detection tests which typi-



Fig. 4. Records of GOE in lane detection evaluation. (a) Histograms
of GOE results. (b)-(c) Cascaded tank model based visualization and
comparison of Platform A and B, respectively.

cally require the detection of all vehicles within a predefined
visible range, the objective of this evaluation is focused
on the most relevant (i.e., nearest) frontal vehicle/pedestrian
travelling in the ego-lane within 20 meters of range. Such
setting is derived from the front collision mitigation feature
in modern ADAS.

As in Fig. 5, with such evaluation setting, the algorithm
in Platform B achieved higher scores than that in Platform
A at Lv.1 and Lv.2. Nevertheless, neither algorithm can
gracefully handle complex traffic scenarios at night. For
example, the complex scenario depicted at the bottom of
the Fig. 2 consists of blurry pedestrians and overexposed
cyclists, which remained difficult for cognition algorithms in
IV.
Sign & Signal Detection Evaluation. In the benchmark
dataset for traffic signs and signals detection, a total of 1849
signs/signals of 25 types were manually annotated, as shown
in Table II. The algorithm in a candidate platform is required
to localize and classify the signs/signals from video inputs.
Extremely small signs/signals with bounding boxes smaller
than 16× 9 pixels are excluded from the evaluation.

As in Fig. 6, both algorithms in the two platforms failed
in all 3 levels. However, Platform B demonstrated its relative
advantages in recognizing Warning Signs, Indication Signs
and Prohibitory Signs. According to Table II, the ability
to detect Guide Signs and Signals is still weak for both
platforms. One possible explanation is that without zoomed-
in image captured with a telescope lens, neither algorithm
could distinguish traffic signal lights from other objects, as

Fig. 5. Records of GOE in front vehicle and pedestrian detection. (a)
Histograms of GOE results. (b)-(c) Cascaded tank model based visualization
and comparison of Platform A and B, respectively.

illustrated by the image at the bottom of Fig. 2.

A. Experimental Analysis

An overview of the results from the proposed GOE
framework is provided in Table III. Although some of them
passed Level 1 evaluations, both failed when encountering
real, complex cognitive challenges, which in return validated
the necessity of such graded evaluation frameworks. From
the subfigure (a)s of Fig. 4–6, it empirically verifies our
speculation that higher scenario complexity often leads to
lower cognition performance.

TABLE II
THE RECOGNITION ACCURACIES IN DIFFERENT CATEGORIES.

Category GT TP Precision

Warning Sign 88 0(A)/39(B) 0.0000(A)/0.4432(B)
Indication Sign 195 1(A)/99(B) 0.0051(A)/0.5077(B)

Prohibitory Sign 680 66(A)/319(B) 0.0971(A)/0.4691(B)
Guide Sign 382 65(A)/40(B) 0.1702(A)/0.1047(B)

Signals 504 72(A)/24(B) 0.1429(A)/0.0476(B)

TABLE III
OVERALL GOE COMBINED ACCURACIES AND PASSED LEVELS. N/A

INDICATES AN ALGORITHM FAILS ALL 3 LEVELS OF EVALUATION.

Tasks Platform A Platform B

Lane Detection 0.7208 (Lv.1) 0.5276 (N/A)
V&P Detection 0.4747 (N/A) 0.8157 (Lv.1)

Signal Detection 0.1229 (N/A) 0.3599 (N/A)



Fig. 6. Records of GOE in traffic sign & signal detection evaluation. (a)
Histograms of GOE results. (b)-(c) Cascaded tank model based visualization
and comparison of Platform A and B, respectively.

IV. CONCLUSIONS

In this paper, the GOE framework is proposed to provide
time efficient, cost effective and repeatable offline evaluation
of the cognitive ability in IVs. To achieve such goals, a quan-
titative Semantic Descriptor is proposed to summarize realis-
tic driving difficulties, an SVM-based classifier is utilized in
the per-segment data gradation subsystem (to classify data at
the simple, medium and complex scenario difficulty ratings),
and a cascaded tanks model is incorporated to provide
efficient evaluation comparison and easily interpretable result
visualization. With a thorough investigation in the section
of case study, the efficacy of proposed GOE framework is
demonstrated and verified.
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